QuAC: Quick Attribute-Centric Type Inference for Python

JIFENG WU, University of British Columbia, Canada
CAROLINE LEMIEUX, University of British Columbia, Canada

Python’s dynamic typing facilitates rapid prototyping and underlies its popularity in many domains. However,
dynamic typing reduces the power of many static checking and bug-finding tools. Python type annotations
can make these tools more useful. Type inference tools aim to reduce developers’ burden of adding them.
However, existing type inference tools struggle to support dynamic features, infer correct types (especially
container type parameters and non-builtin types), and run in reasonable time. Inspired by Python’s duck
typing, where the attributes accessed on Python expressions characterize their implicit interfaces, we propose
QuAC (Quick Attribute-Centric Type Inference for Python). At its core, QUAC collects attribute sets for Python
expressions and leverages information retrieval techniques to predict classes from these attribute sets. It also
recursively predicts container type parameters. We evaluate QuAC’s performance on popular Python projects.
Compared to state-of-the-art non-LLM baselines, QuAC predicts types with high accuracy complementary
to those predicted by the baselines while not sacrificing coverage. It also demonstrates clear advantages in
predicting container type parameters and non-builtin types and reduces run times. Furthermore, QuAC is
nearly two orders of magnitude faster than an LLM-based method while covering nearly half of its errorless
non-trivial type predictions. It is also significantly more consistent at predicting container type parameters
and non-builtin types than the LLM-based method, regardless of whether the project has ground-truth type
annotations.

CCS Concepts: » Software and its engineering — Software notations and tools.
Additional Key Words and Phrases: Python, Type Inference, Gradual Typing, Static Analysis

ACM Reference Format:
Jifeng Wu and Caroline Lemieux. 2024. QuAC: Quick Attribute-Centric Type Inference for Python. Proc. ACM
Program. Lang. 8, OOPSLA2, Article 343 (October 2024), 30 pages. https://doi.org/10.1145/3689783

1 Introduction

According to analyses from GitHub Octoverse [GitHub 2023] and IEEE Spectrum [IEEE Spectrum
2023], Python is one of the most favored programming languages since 2018, surpassing stalwarts
such as Java and C/C++. Unlike these languages, Python is dynamically typed, facilitating rapid
prototyping and making it particularly attractive in diverse fields, including data science, web
development, and IoT. However, as Python has become increasingly pervasive, the disadvantages
of dynamic typing have become more salient. Amongst other things, static types enable more
meaningful static analyses, in-IDE error checks, and refactoring passes. Thus, in 2014, PEP 484 [van
Rossum et al. 2014] introduced a standard syntax for Python type annotations. These type annota-
tions are not checked by Python itself, but are used by IDEs, linters, and static type checkers—such
as mypy [mypy Developers 2024] and Pytype [Google 2024]—to find errors before code runs.
Despite the advantages of static typing, only a very small proportion of Python code is annotated.
A 2020 study of Python types in the wild [Rak-amnouykit et al. 2020] found that six years after

Authors’ Contact Information: Jifeng Wu, University of British Columbia, Vancouver, Canada, jifengwu2k@gmail.com;
Caroline Lemieux, University of British Columbia, Vancouver, Canada, clemieux@cs.ubc.ca.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/10-ART343
https://doi.org/10.1145/3689783

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 343. Publication date: October 2024.

HTTPS://ORCID.ORG/0000-0002-7267-5117
HTTPS://ORCID.ORG/0000-0002-9610-8520
https://doi.org/10.1145/3689783
https://orcid.org/0000-0002-7267-5117
https://orcid.org/0000-0002-9610-8520
https://doi.org/10.1145/3689783
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/

343:2 Jifeng Wu, Caroline Lemieux

introducing PEP 484, only 2,678 of 70,000 analyzed repositories had type annotations. Further,
on average, 1,144 repositories have less than 1 type annotation per file. This conflict—the clear
advantages of type annotations but the apparent reluctance of developers to add them to Python
code—has led to the development of several type inference tools that aim to reduce developers’
burden of adding type annotations by automatically annotating untyped Python files. A recent
study of the utility of type inference tools finds that they can reduce the time it takes to annotate
Python code with type annotations by 40% [Guo et al. 2024].

We believe a good Python type inference tool should satisfy, at the very least, two core criteria.
First, its predictions should be correct. For untyped Python code, there may not be a ground truth,
and in this case, the predicted types should at least be correct modulo type checker [Allamanis et al.
2020; Yee and Guha 2023], i.e., raise no type checking errors. Second, the type inference tool should
output as many type predictions as possible, i.e., achieve high coverage of the code being analyzed. A
type inference tool that only gives suggestions for 20 of 1000 typing slots has limited utility.

The landscape of type inference for Python (and other dynamically typed languages) is defined by
a contrast between traditional static type inference methods and emerging machine learning-based
methods. Static type inference methods [Cannon 2005; Google 2024; Hassan et al. 2018; Maia et al.
2012; Meta 2024; Microsoft 2024; Salib 2004; Sun et al. 2022; Vitousek et al. 2014; Wang 2022] utilize
rule-based approaches, data-flow analysis, and heuristics to create and solve typing constraints.
They aim for correctness and achieve high accuracy with simple types in straightforward contexts.
However, they often only support a subset of their target languages [Anderson et al. 2005; Chandra
et al. 2016] and can struggle with dynamic features [Richards et al. 2010], affecting their coverage.
Moreover, the computational effort required to generate and solve their constraints can limit
their usage in large-scale codebases. Conversely, machine learning-based approaches [Allamanis
et al. 2020; Dash et al. 2018; Hellendoorn et al. 2018; Peng et al. 2022; Pradel et al. 2020; Wei et al.
2023; Xu et al. 2016; Yan et al. 2023] use natural language cues and context with various machine
learning models (e.g., sequence models, graph models) to improve coverage and accuracy in type
inference. These methods can handle the complexities of dynamic languages and provide multiple
candidate types, enhancing inference flexibility. However, they cannot guarantee type correctness
and struggle with rare types [Mir et al. 2021]. Despite recent advances in hybrid models that
statically validate type predictions [Allamanis et al. 2020; Peng et al. 2022; Pradel et al. 2020; Yan
et al. 2023], their validation processes can only eliminate invalid types suggested by machine
learning models without correcting them, leading to potential drops in coverage. Furthermore,
Large Language Model (LLM)-based techniques [Wei et al. 2023] present immense requirements
for various resources such as computation and energy [Chien et al. 2023; Sakota et al. 2024; Samsi
et al. 2023]. Moreover, even with extensive code datasets for pre-training these models, it is still
difficult in practice to fully cover the code distribution. This results in out-of-distribution (OOD)
generalization challenges and unpredictable model inference behaviors [Hajipour et al. 2024].
Finding a balance between correctness, coverage, and performance remains challenging.

We believe Python’s duck typing presents new opportunities for type inference. From its inception,
Python has endorsed duck typing [Milojkovic et al. 2017]: the attributes (fields, methods) accessed
on expressions implicitly define interfaces that valid types should implement. If the type of an
expression satisfies that interface (i.e., “quacks like a duck”), the program should run fine.

For example, consider the code fragment in Listing 1, which defines a Point type and a global
function maximize. The parameter points of the global function maximize can be any type provid-
ing the method __getitem__ for indexing on Line 6 and for slicing on Line 7. Furthermore, given
the for-loop on Line 7 iterating over points[1:1], the type of points[1:] (and thus of points)
should also provide the method __iter__ supporting iteration. Thus, points could be a list, a

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 343. Publication date: October 2024.

QuAC: Quick Attribute-Centric Type Inference for Python 343:3

Listing 1. maximize is an example of a duck-typed Python function. Adapted from the bm_float benchmark
in the Python Benchmark Suite [Python Core Developers 2024]

1 class Point(object): # A 3D Point Class
def __init__(self, i):
def maximize(self, other): ... # Sets values to the max in each dimension

2

3

4

5 def maximize(points): # Return the maximal point for a set of 3D points
6 elem = points[0]

7 for p in points[1:]:

8 elem = elem.maximize(p)

9 return elem

tuple, an array.array!, or any other sequence type. Python’s typing module defines an interface
that covers all such types: Sequence. Note that providing the attribute set {__getitem__, __iter__}
is necessary for the type of points. Moreover, the element accessed through indexing on Line 6,
elem, calls its method maximize on Line 8. If Point is the only type providing this attribute in the
context of Listing 1, then elem should be annotated with the type Point. Again, note that providing
the attribute set {maximize} is necessary for the type of elem.

We find that existing state-of-the-art approaches struggle with this example. The industrial static
type inference tool Pytype [Google 2024], which aims for soundness, does not make predictions
for the parameter points of the global function maximize and predicts its return value to be the
trivial Any. The academic static type inference tool Stray [Sun et al. 2022] also fails to predict
types for the parameter points and the return value. The machine learning-based type inference
technique incorporating a static validation process HiTyper [Peng et al. 2022] predicts the type
of points to be tuple, which is technically correct but is over-constrained (points could also be
some other sequence type such as 1ist) and does not predict tuple ’s type parameters (the type
of the elements points contains). Furthermore, HiTyper erroneously predicts the return value of
the global function maximize to be str. Similarly, the recent large language model (LLM)-based
type inference method TypeT5 [Wei et al. 2023], though making the correct prediction, Point, for
the global function maximize’s return value, also makes an over-constrained prediction lacking
type parameters, list, for the parameter points.

Observe, above, that the attribute set accessed on a Python expression characterizes the expres-
sion’s implicit interface that a valid type must provide. We believe finding the simplest types that
satisfy this attribute set may be a robust, high-coverage way of conducting type inference.

Based on this intuition, we propose QuAC (Quick Attribute-Centric Type Inference for Python).
QuAC combines simple static analysis techniques with information retrieval techniques to try
and find a balance between correctness, coverage, and performance. QuAC desugars Python’s
syntactic constructs into attribute accesses and collects attribute sets like {__getitem__, __iter__}
for the parameter points and {maximize} for the return value of the global function maximize
in Listing 1. For built-in functions whose implementations are not available in Python, QuAC
leverages extra type information from Typeshed [Typeshed Contributors 2024]. Then, it queries
classes implementing the given attribute set. Considering that rare attributes are more suggestive
of specific classes, QUAC uses BM25 queries, a standard information retrieval technique [Robertson
et al. 2009]. Additionally, QuAC recursively applies its attribute collection and class querying
technique to predict container type parameters. For example, QuAC can successfully predict the
types of the parameter points and the return value of the global function maximize in Listing 1 to
be Sequence[Point] and Point, respectively.

IThe class array in Python standard library’s array module.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 343. Publication date: October 2024.

343:4 Jifeng Wu, Caroline Lemieux

To evaluate QUAC’s performance, we compare QuAC to state-of-the-art non-LLM approaches
Stray [Sun et al. 2022] and HiTyper [Peng et al. 2022]. We chose these as examples of static and
machine learning techniques capable of predicting both parameters and return values found to
outperform other approaches in their evaluations. Considering that a major goal of Python type
inference is to predict types for Python code without type annotations and facilitate migrating
untyped Python codebases to typed ones, we evaluate QuAC and the baselines on a set of popular
Python projects including untyped ones. Inspired by a similar evaluation of TypeScript type
inference methods for migrating untyped JavaScript codebases [Yee and Guha 2023], we evaluate
the correctness of type predictions by running mypy [mypy Developers 2024] on each typing
slot individually. We evaluate the coverage by counting the number of non-trivial (i.e., not None
or Any) predictions. Further, we compare QuAC’s ability to predict container type parameters
and non-builtin types against Stray and HiTyper and compare their run times on benchmarks
of different sizes. In addition, we also compare QuAC against TypeT5 [Wei et al. 2023], a recent
LLM-based approach that fine-tunes CodeT5 [Wang et al. 2021], a pretrained LLM for code.

In total over all benchmarks, QuAC achieves type prediction correctness higher than Stray
and HiTyper while retaining a competitive type prediction coverage. Moreover, it can predict
container type parameters with high correctness and coverage. By analyzing the typing slots where
Stray, HiTyper, and QuAC predict correct types, we find that QuAC excels on typing slots where a
non-builtin type is correct, overcoming the rare types issue faced by machine learning-based type
inference methods. Its typing slots with correct type predictions, in general, complement Stray
and HiTyper, suggesting its potential to be used in an ensemble type inference method. Moreover,
QuAC is substantially faster than Stray and HiTyper. Further, compared to the LLM-based method
TypeT5 [Wei et al. 2023], QuAC covers a significant share of TypeT5’s errorless non-trivial type
predictions (47.8% on average) with much greater efficiency (92x faster on average) and retains
significant advantages in predicting container type parameters and non-builtin types, delivering
consistent results regardless of whether the benchmarks had type annotations in training data.

Overall, we make the following contributions:

e We introduce QuAC (ref. Section 4), a type inference method that collects attribute sets
for Python expressions, employs information retrieval methods for class prediction, and
recursively predicts container type parameters.

e We implement QuAC for Python (ref. Section 5) and distribute its implementation as open
source on Zenodo [Wu and Lemieux 2024].

e We evaluate QuAC and non-LLM baseline techniques on a set of popular Python projects (ref.
Section 6), demonstrating QuAC’s advantages in overall accuracy, container type parameters,
non-builtin types, and run times, while not sacrificing coverage.

e We compare QuAC to an LLM-based technique TypeT5 [Wei et al. 2023] on the same Python
projects and provide a contrastive evaluation of TypeT5’s performance on both untyped and
typed benchmarks. We find QuAC is nearly two orders of magnitude faster while covering
nearly half of TypeT5’s errorless non-trivial type predictions and has significantly more
consistent performance in predicting container type parameters and non-builtin types.

2 High-Level Overview

We provide a high-level overview of QuAC in this section. QuAC works by translating Python’s
expressions and statements to attribute accesses and collecting attribute sets for Python expressions,
including the parameters and return values of functions. It also populates a class query database
including concrete classes available under the given typing context and protocols (abstract base
classes) in the Python standard library. Afterward, QuAC queries its database for the most likely

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 343. Publication date: October 2024.

QuAC: Quick Attribute-Centric Type Inference for Python 343:5

class (Section 4.2.4) and recursively predicts type parameters for containers (Section 4.3). We
illustrate QuAC’s type prediction process with the example in Listing 2.

Listing 2. Motivating example adapted from the fasta Python 3 #3 program in The Computer Language
Benchmarks Game [The Computer Language Benchmarks Game Team 2023].

import bisect

1
2

3 def make_cumulative(table):

4 P =1[]; C = [1; prob = 0.

5 for char, p in table:

6 prob += p; P += [prob]; C += [ord(char)]
7 return (P, C)

8
9

def random_fasta(table, n, seed):
10 width = 60; im = 139968.0
11 # ...
12 if n % width:
13 probs, chars = make_cumulative(table)
14 count = 0.0; end = (n / float(width)) - count_modifier
15 while count < end:

16 for i in range(width):
17 seed = (seed * 3877.0 + 29573.0) % 139968.0
18 line[i] = chars[bisect.bisect(probs, seed / im)]

Predicting Basic Types. In Listing 2, the parameter n of random_fasta is involved in a modulo
operation with an int (n % width on Line 12) and is divided by a float (n / float(width) onLine
14). This requires that n has the attributes __mod__ and __truediv__. To retrieve a type for n, QuUAC
queries its class database (as defined in Section 4.2.4) with the attribute set {__mod__, __truediv__}.
The query returns the numeric protocol numbers.Real (whose concrete subclasses include int
and float) as the highest-ranked type. So, QuAC predicts n’s type annotation as numbers.Real.
Similarly, the parameter seed of random_fasta has the attribute set {__mul__,__truediv__} from
the operations seed * 3877.0 on Line 17 and seed / im on Line 18. From this, QuAC, following the
same querying procedure as before, predicts seed’s annotation as numbers.Real.

Predicting Container Type Parameters. On Line 5 of the function make_cumulative, we iterate
over the parameter table. This means that table must support the method __iter__. Given the
attribute set {__iter__}, QuAC predicts table’s type as Iterable[T], where T is a type parameter
representing the type of the items iterated over it. To predict T, we recursively invoke QuAC to
predict the type of the iteration target of table. In the for-loop on Line 5, the iteration target is the
2-tuple char, p. QuAC predicts its type to be tuple. Finishing the prediction requires recursively
calling QuAC to predict types for the first (char) and second (p) elements of the 2-tuple.

We observe that char is passed to the built-in function ord, which, from a Typeshed lookup,
accepts a one-character str and returns an int. Thus, QuAC populates char’s attributes with the
attributes of str, and predicts char’s type as str. Given prob = 0., we know prob is an instance
of type float. Given prob += p, QuAC populates p’s attribute set with the attributes of prob.
This leads QuAC to predict p’s type as float. Linking these together, QUAC predicts char,p as
tuple[str, float]. With this type for T, the prediction is complete: QuAC predicts the parameter
table of make_cumulative to be Iterable[tuple[str,float]].

Related Expression Propagation. In some code, the attributes accessed on an expression are sparse.
In these situations, it may be possible to populate their attribute sets with those of related expressions.
For example, when predicting the type of the parameter table of random_fasta, we observe that
it is not operated on except to be passed to the parameter table of make_cumulative. In this case,
it is meaningful to perform an interprocedural analysis and adopt the attributes and information
about type parameters from table in make_cumulative.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 343. Publication date: October 2024.

343:6 Jifeng Wu, Caroline Lemieux

Listing 3. Examples of Python Type Annotations

1 def greeting(name: str) -> str:
2 return + nam

3

4 def f(x: typing.Any) -> None:

5 y = x.foo(); z = y.bar(Q)

After propagating the information, QuAC knows that the parameter table of random_fasta
should have the attribute __iter__ and its iteration target is the 2-tuple char,p on Line 5. Fol-
lowing the logic above, QuAC predicts its type to also be Iterable[tuple[str,float]]. This
demonstrates the utility of augmenting the attribute sets and information about type parameters of
expressions with those of interprocedurally related expressions. We also augment expression typing
constraints with those of intraprocedural related expressions in assignment statements, arithmetic
and logical operations, and comparisons, as hinted above and detailed in Section 4.2.2.

3 Background

This section provides additional background on topics necessary to precisely define QuAC: readers
familiar with these concepts may skip directly to Section 4 for the details of QuAC.

3.1 Python Type Annotations

PEP 484 [van Rossum et al. 2014] brought optional type annotations to Python 3.5 for enhanced
code completion in IDEs, static analysis, refactoring, and code generation.

In its simplest form, Python type annotations denote classes for function parameters and return
values. For instance, the function greeting in Listing 3 expects the parameter name and the return
value to be of class str. Beyond classes, Python type annotations also allow a variety of other
constructs. The singleton None indicates that a parameter or return value is expected to be this
singleton object. Similarly, the singleton Any represents a dynamically typed value of an arbitrary
type. In Listing 3, function f accepts a parameter x of any type and returns the singleton object
None—the default behavior for Python functions without an explicit return statement.

Furthermore, a category of classes, known as generic classes, permits parameterization. For
instance, dict[int, str] represents a dict with keys of type int and values of type str. Different
generic classes follow different parameterization syntax and semantics. For example, list[str]
denotes a list containing strings, while tuple[int, int,str] signifies a 3-tuple containing two
integers and a string.

Over time, Python’s type annotation framework has been enriched through a series of PEPs,
including union types, literal types denoting that a variable’s value must correspond to one of
the specified literals, and annotated types which add context-specific metadata (such as the value
range of a variable) to an annotation. QUAC aims to predict stable and frequently used types for
type annotations: classes (including primitives such as int), and parameterized standard library
containers.

3.2 Special Methods

Python uses objects as its primary data abstraction method. Each object has a class, which can
define special methods [Python Software Foundation 2020] (also known as magic methods or dunder
methods) invoked by Python operators. For example, a class implementing the __getitem__ method
enables its instances to use the indexing notation (x[i]), while the methods __add__, __sub__,

__mul truediv__, __floordiv__ are invoked by the binary arithmetic operatlons +, -, %,

_ — —

/, //. Conversely, the presence of Python operators in source code also implies the eX1stence of

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 343. Publication date: October 2024.

QuAC: Quick Attribute-Centric Type Inference for Python 343:7

relevant special methods in the classes of their operands. These special methods are an important
constitutive part of the attribute sets we collect for expressions to predict their classes.

3.3 Typeshed

Typeshed [Typeshed Contributors 2024] is an officially maintained repository of stub files for the
Python standard library. A stub file outlines the public interface (classes, variables, and functions) of
a Python module and contains type annotations. It adheres to Python syntax but replaces variable
initializers, function bodies, and default arguments with ellipsis expressions. Moreover, stub files
may contain circular imports, cannot be imported as Python modules, and have to be manually
parsed using Python’s ast module. We use Typeshed stub files in our project to determine the
attribute requirements of parameters and return values of functions within the Python standard
library. As much of the Python standard library is written in C, such information would be difficult
to acquire without analysis of non-Python code.

4 Method
4.1 Overview

Algorithm 1 shows the overall QuAC algorithm. QuAC begins its analysis on a set of Python AST
module nodes M = {m;, ..., m,}. First, QUAC conducts pre-analysis to collect base information
for type prediction. It constructs C, a database of candidate classes (Section 4.2.4). Then it generates
P, a map of name nodes in the AST to their definition nodes, following Python’s scoping rules.
The last part of the pre-analysis is creating p, which maps each function definition to a symbolic
return value to handle regular and async functions and generators. After this pre-analysis is done,
it collects typing constraints (Line 4, Algorithm 1), and predicts types for all functions in the input
modules (Line 5, Algorithm 1) based on these typing constraints. The meat of QuAC’s analysis lies
in collecting the typing constraints.

Algorithm 1: Overall Algorithm

Data: Module nodes M = {my,...,m,}

Result: Type predictions P

C « construct a database of candidate classes;

D « map each name to its definition via Python name resolution;
p < map each function definition to a symbolic return value;

A, Gr, Gs « CollectTypingConstraints(M, D, p);

P «— TypePrediction(M, p, A, Gr, Gs);

return P

S TSI O

Algorithm 2: Type Prediction

Data: Module nodes M, Candidate classes C, Function definition to symbolic return value mapping p, Node to attributes
mapping A, Directed graphs storing node relations and typing constraint subsets G,, Gs

Result: Type predictions P

// E is a set of expression nodes

Function PredictTypeOfExprSet(E, C, A, Gr, Gs):

E' «— {e’|e’ € Gs,Je € E s.t. € reachable in Gs from e};

a < Uegep Ale'];c « if a # 0 then argmax,, . score(c’, a) else Any; 7« [];

for R € GetRelationSetsOf TypeParameters(c) do

E’" «— {e’|le’ € E,re R (e,e",r) e G };

t’ « PredictTypeOfExprSet(E”, C, A, Gr, Gs); T.add(t");

return if 7 # [] then Parameterize(c, 7) else c;

// Main algorithm

8 P« 0;

9 foreach m € M do

10 foreach f =def g(xy,...,x,) € M do

// Predict type of each function parameter and return value

foreach e € {x1,...,xp, p[g]} do P[e] « PredictTypeOfExprSet({e}, C, A, Gr, Gs) ;

12 return P

R T e e

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 343. Publication date: October 2024.

343:8 Jifeng Wu, Caroline Lemieux

QuAC’s typing constraints are collected in three main data structures. The first is A, a mapping
from AST expression nodes to attributes (Section 4.2.1). A is the intuitive base behind QuAC,
answering the question: which attributes are accessed on each AST expression node? To predict
container type parameters, QUAC also builds G, during its analysis. G, a directed graph storing
relations among nodes, i.e., tracking which AST nodes correspond to the key of a dictionary node
(Section 4.3.1). Finally, QuAC builds Gs, which links different AST nodes whose types should be
compatible. In particular, an edge (ej, e2) in Gs means e;’s typing constraints are a subset of e;’s
(Section 4.2.2). A formal description of how we collect these typing constraints is presented in
Algorithm 3. We explain the type constraint collection in detail in the next sections.

With these typing constraints, QuAC runs Algorithm 2 to predict types. In Lines 9-12 of Algo-
rithm 2, QuAC loops over all function definitions in the input Python modules (Line 10), and runs
PredictTypeOfExprSet (Line 11) to predict the type for each function parameter and return value.
Given a set of expression nodes E to predict types for, PredictTypeOfExprSet first collects the set of
nodes E’ whose typing constraints are a subset of those in E, by finding the nodes reachable from
any e € E in Gs (Line 2). On Line 3, it then merges the attribute sets (Section 4.2.1) of all nodes in
E’ with a simple union, and predicts a class ¢ based on the merged attribute set (Section 4.2.4). If
c is a generic container (e.g., dict), QuAC predicts its type parameters; otherwise, it returns c as
the type prediction. Specifically, for each type parameter of a generic container, QuAC obtains
its relation set R. Then, QuAC identifies the set of nodes E” capturing the usages of that type
parameter using G, (Line 5, Section 4.3.1) and runs PredictTypeOfExprSet recursively on E” to
predict the parameter type ¢’ (Line 6). Then, it parameterizes the predicted generic container with
the predicted parameter types to derive the final type prediction result (Line 7). This recursive
algorithm allows QuAC to predict non-parametric types (e.g., int) and arbitrary nested parametric
types (e.g., dict[str,list[1list[int]]]) in a unified manner.

4.2 Predicting Classes

The main step in our type prediction procedure is predicting what class an expression is. To do this,
we assign each Python expression an attribute set representing the attributes in an unknown class.
We populate A, which maps each expression to its attribute set, by collecting attributes based on
syntactic constructs. The attribute sets of some expressions are subsets of others, as expressed by
edges in Gs. Then, we query classes based on these attribute sets.

4.2.1 Collecting Attributes. We perform attribute collection by walking the nodes of the target
Python AST in evaluation order, and adding attributes to A in a syntax-directed manner. We add at-
tributes directly accessed on expressions (e.g., X . y accesses the attribute y on variable x), and special
methods (Section 3.2) accessed internally by the Python interpreter through syntactical constructs.
For example, the indexing expression x[y] requires that x supports indexing via the __getitem__
method. The with statement with x as y requires that x is a context manager providing the
__enter__ and __exit__ methods. Python’s Language Reference [Python Software Foundation
2020] lists the special methods each Python expression and statement implies. Algorithm 3 shows
which attributes are added to A for different syntax constructs.

4.2.2 Typing Constraint Subsets. Some expressions have no attribute accesses in a function body.
In such cases, it may be possible to populate their attribute sets through other expressions whose
attribute sets we assume to be subsets of these expressions’. We store this information as a typing
constraint subset graph Gs. Gs is a directed graph where an edge (e, e;) indicates that e;’s attribute
set is a subset of e;’s, i.e., A[ez] C A[e;]. This happens at:

Assignments. Given x = y, we consider (x,y) € Gs (Lines 48 and 38, Algorithm 3).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 343. Publication date: October 2024.

QuAC: Quick Attribute-Centric Type Inference for Python 343:9

Function return values. A Python function may have multiple return statements and return a
generator or coroutine. To handle these complexities, we introduce a symbolic return value p for
each function. For ordinary functions, we consider p’s attribute set a superset of the attribute sets of
expressions returned at different return statements (Line 47, Algorithm 3). For functions returning
a generator g or coroutine c, we initialize p’s attribute set with the attribute set of g or ¢, and add
relations (Section 4.3.1) between p and returned, yielded, and awaited expressions to predict the
type parameters of g or ¢ (Line 41,45, Algorithm 3).

Algorithm 3: Collecting Typing Constraints

Input: Module nodes M, Name to definition mapping D, Function definition to symbolic return value mapping p
Result: N is all AST nodes in M. A : N — attribute sets; G» : N X N X relation type; Gs : N X N

1 RT « 0;

2 Setlnstance(n,T) = RT [n].add({Instance(T)}); A[n].add(attrs(T));

3 foreachm € M do

14 populate R7” with names corresponding to modules, classes, global functions, and instances in m;

5 foreach n € visit child nodes of m in evaluation order do

6 switch n do

7 case Name do d «— D[n]; RT [n].add(RT(d]); Gs.add({(n,d), (d,n)}) ;

8 case num, str,bytes do Setlnstance(n, typeof(n)) ;

9

case [e},...,ey], (e1,....en), {e,...,en}, {k1:01,...,ky : 0, } do
10 SetInstance(n, typeof(n));
1 Addto G, {(n,e;, {ValueOf, IterTargetOf})|i € [1,n]} (list), {(n, e;, {Element i Of})|i € [1,n]} (tuple),
{(n,e;, {IterTarget0f})|i € [1,n]} (set), {(n, k;, {KeyOf, IterTargetOf}), (n, v;, {ValueOf})|i € [1,n]}
(dict);
12 case unary e do Ale].add({attr(unary)}); Gs.add({(n,e), (e,n)}) ;

13 case e; binop e; do

1 Aler].add({attr(binop)});

15 if binop # * then

16 ‘ Gs.add({(n,e1), (e1,n)});

17 if binop # % then Gs.add({ (e, ez), (ez,€e1)}) ;

18 case e; cmpop ez do

19 if cmpop € {==,!=,<,<=,>,>=} then Ale;].add({attr(cmpop)}); Gs.add({(e1,ez), (ez,€1)}) ;
20 if cmpop € {in,not in} then

21 | Alex].add({__contains__, __iter__}); G,.add((es, e, {IterTarget0Of}));
22 case e(ey,...,e,) do

23 case f =def g(xy,...,x,) € RT[e] do

Gs-add({(e;,x;)|i € [1,n]} U{(n, plg])});

if g is in the Python standard library then populate R 7 [n] via Typeshed lookup;
26 case m = InstanceMethod(def g(self, xy,...,x,)) € R7 [e] do

Gs-add({(e;,x;)|i € [1,n]} U{(n, plg])});

if g is in the Python standard library then populate R 7 [n] via Typeshed lookup;

29 case ¢ = class C € R7[e] do

30 | def g(self, xi,...,x,) « constructor of ¢; Gs.add ({ (e;, x;)|i € [1,n]}); Setinstance(n, c);
31 Alel.add({__call__}); Gr.add({ (e, e;, {Parameter i 0f})|i € [1,n]} U {(e, n, {ReturnvalueOf})});
32 case ¢ [e;] do

33 Aler].add({__getitem__});

34 if typeof(e;) € {slice, tuple} then Gs.add({(n,e;), (e;,n)});

35 else G,.add({(ey, e;, {KeyOf}), (e;,n, {ValueOf})}) ;

36 case e.x do Ale].add({x}); R‘T[l.add({R.x|R € RT[el}) ;

37 case def f(x; =e,...,x, =€) : ...do

38 Gs.add({(xi.e;)]i € [1, n]}) p < plnl;

39 Gr.add({(n,x;, {Parameter i 0f})|i € [1,n]} U {(n, p, {ReturnvalueOf})});

40 1,5,y « nodes returned from, sent to, yielded from f;

41 if f is a generator then

Gr.add({(p, y, {IterTargetOf})|y € y} U {(p,s, {SendTargetOf})|s €
s} U {(p,r, {YieldFromAwaitTargetOf})|r € r});
SetInstance(p, if f is async then Generator else AsyncGenerator);
44 else
if f is async then
| Gr.add({(p,r,{YieldFromAwaitTargetOf})|r € r}); Setlnstance(p, Coroutine);
else if r # 0 then Gs.add({(p,r)|r € r}) else SetInstance(p,None) ;

18 case e; = e; do Gs.add({(e1,e2)}); RT [e1].add(RT ez]) ;

19 case for e; ine; do Aley].add({__iter__}); Gr.add({(e,, e, {IterTarget0f})}) ;

50 case withe; ase, do Ale;]|.add({__enter__, __exit__});

51 case yield frome do Ale].add({__iter__}); Gr.add({(e,n, {YieldFromAwaitTargetOf})}) ;
52 case await e do Ale].add({__await__}); G,.add({(e,n, {YieldFromAwaitTargetOf})}) ;

53 return A, G, Gs;

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 343. Publication date: October 2024.

343:10 Jifeng Wu, Caroline Lemieux

Function calls. If we can precisely determine which function is called at a call site (Section 4.2.3),
we consider the attribute sets of parameters within the function definition to be subsets of those
of arguments passed at the call site, and the attribute sets of symbolic return values to be subsets
of those of function call results. For example, given a call site f(y;,y,) and function definition
def f(xi, x2) with a symbolic return value p, then (y1, x1), (y2, x2), (f(y1, y2), p) € Gs. This process
is formalized in Line 22 of Algorithm 3.

Two expressions may also have their attribute sets to be mutual subsets (i.e., (e, €2), (€2, €1) € Gs)
when they are involved in the following syntactical constructs:

o The operands and results of arithmetic and logical operations (except *, which allows multiplying
sequences and integers, and %, which allows formatting strings, Lines 12 and 13, Algorithm 3).

o The left and right hand sides of comparisons (Line 19, Algorithm 3).

e An expression that is sliced (indexed by a slice or tuple object, e.g., y[1:10], X[1:10, :5]),
and the result of slicing (Line 34, Algorithm 3).

e Accessing a previously defined name based on name resolution (Line 7, Algorithm 3).

4.2.3 Resolving Function Calls. If we can resolve function calls, we can propagate attribute set
relationships between function parameters and arguments, and between symbolic return values
and values returned from function calls. To resolve function calls, we associate a run-time term set
RT [e] with each Python expression e. Based on these run-time term sets, we can then resolve most
calls either to user-defined code or the Python standard library. Run-time terms include modules,
classes, functions, instances, and methods.?

R is populated in Algorithm 3 in sync with the other typing constraints. To build R7", we first
populate the run-time terms of names corresponding to modules, classes, functions, and instances in
each module (Line 4, Algorithm 3). Then, we populate the run-time terms of derivative expressions
resulting from the following rules:

R-1. Accessing modules, classes, functions, and instances on modules, functions on classes, func-
tions and methods on instances (Line 36, Algorithm 3).

R-2. Initializing an instance explicitly via literal notation or calling a class (Lines 8, 9, 29, Algo-
rithm 3), or implicitly via returning a generator or coroutine instance or None from a regular
function with no explicit return value (Lines 41, 45, 47, Algorithm 3).

R-3. Calling a function or method in the Python standard library results in an instance determined
via a Typeshed (Section 3.3) lookup (Lines 25, 28, Algorithm 3).

R-4. Copying run-time terms via an assignment or by accessing a previously defined name (Lines 7,
48, Algorithm 3).

Example. Fig. 1 shows sample code (left), and the run-time term sets (right) QuAC populates for
different expressions in the code. We walk through QuAC’s run-time term collection procedure in
this example. From import re as r, we add Python’s re module as a run-time term for r. Then,
we apply the above rules to populate the run-time terms of derivative expressions:

(R-1) We add the function re.compile as a run-time term for r.compile.

(R-3) Typeshed says re.compile’s return value is an instance of re.Pattern: we add this as a
run-time term for r.compile(pattern) (and regex, R-4).

(R-1) We add the method re.Pattern.match as a run-time term for regex.match.

(R-3) Typeshed says re.Pattern.match returns an instance of None or re.Match: we add both as
run-time terms for regex.match(characters, pos) (and match, R-4).

(R-1) We add the instance method re.Match. group as a run-time term for match.group.

2Methods include bound instance methods and class methods, while unbound methods are considered to be functions.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 343. Publication date: October 2024.

QuAC: Quick Attribute-Centric Type Inference for Python 343:11

1 import re as r
2 def lex(characters, token_exprs):

Expression Run-time Term Set
3 pos = 0; tokens = []
4 while pos < len(characters): r module re
5 match = None r.compile global function re.compile
6 for token_expr in token_exprs: regex instance of re.Pattern
7 pattern, tag = token_expr regex.match instance method re.Pattern.match
8 regex = r.compile(pattern) match None, instance of re.Match
9 match = regex.match(characters, pos) match.group instance method re.Match.group
10 if match: text instance of str, instance of bytes
1 text = match.group(0)

Fig. 1. To resolve calls, QUAC finds the run-time terms associated with each Python expression. The table on
the right gives the run-time term sets QUAC populates for Python expressions in the code listing.

(R-3) Typeshed says re.Match.group returns an instance of str or bytes: we add both as run-time
terms for match.group (@) (and text, R-4).

Through this procedure, we determine what is being called at a large number of call sites. If
the called function or method” is user-defined, we add subset relations between the attribute sets of
parameters/arguments and symbolic return values/call results (Section 4.2.1). If the called function
or method is from the Python standard library, QuAC initializes dummy parameters and symbolic
return values for the callable and initializes their attribute sets by looking up Typeshed (Section 3.3),
before adding subset relations as for user-defined callables.

4.2.4 Querying Classes. The last step in class prediction is querying classes (Line 3, Algorithm 2)
for a given attribute set. We first construct C in Algorithm 1, a set of candidate classes:

e Built-in classes such as int, str, and 1ist.

e Protocols [van Rossum et al. 2018] (abstract base classes) in the Python standard library, such
as I'terable representing any object supporting iteration and Callable representing any object
that can be called. These are useful when the attribute requirements of an expression point to
an interface requirement (e.g., supporting iteration) rather than concrete classes satisfying that
interface requirement (1ist, etc.) This is a common situation given Python’s duck typing.

o User-defined classes within the Python files being analyzed and classes within imported external
modules (both Python standard library and third-party).

From this database, we query candidate classes using the Okapi BM25 ranking function [Robert-
son et al. 2009]. Given an attribute set a = {«y, ..., a, }, the BM25 score of a class ¢ € C is:

score(c, a) = iIDF(ai) . flai,c) - (ki +1)
i=1 flane)+k - (1—b+b- L)

avgel

1)
where f(a;, c) is the number of times* a; occurs in ¢, |c| is the length of ¢ in attributes, and avgcl is
the average class length in the class query database. k; and b are free parameters. Based on the
guidelines in [Manning et al. 2008], we use k; = 1.50 and b = 0.75. IDF(«;) is the IDF (inverse
document frequency) weight of the attribute «;. It captures the rarity of the attribute, or how much
information the attribute provides [Robertson 2004]. Given C = {cy, ¢z, ... ¢}, the IDF of ¢; is:

|IC| — n(a;) +0.5

IDF(a;) =1
(@) =In n(a;) +0.5

@)

3Calling a class boils down to calling its constructor while calling an instance boils down to calling its __call__ method.
4As Python classes do not include duplicate attributes, this is either 1 if the attribute is present, or 0 if it is absent.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 343. Publication date: October 2024.

343:12 Jifeng Wu, Caroline Lemieux

where n(a;) = |{c|c € C, a; € c}| is the number of classes containing «;.

The rationale for using IDF weighting is that not all attributes are equal in class prediction, with
rare attributes more suggestive of specific classes. For example, object is at the top of Python’s
class inheritance hierarchy, and every class in Python has object’s attributes. Thus, those attributes
cannot be used to discern classes. In contrast, str is the only built-in class providing the attribute
encode. Thus, when only considering built-in classes, the attribute encode within an attribute set
suggests str due to the attribute’s high IDF weight.

4.3 Predicting Type Parameters for Containers

The procedure above allows us to predict classes. However, in addition to classes themselves, generic
classes (e.g. dict) parameterized by type parameters (e.g. K, V in dict[K, V] assigned K=str, V=int
indict[str,int], Section 3.1) are pervasive in Python. Through a quantitative analysis of the
2083 type annotations present in the ten most popular typed pure-Python packages [Libraries.io
2023], we found that 1036 (49.74%) contained parameterized generic classes. Due to their ubiquity,
especially for denoting container element types [van Rossum et al. 2014], predicting type parameters
for generic classes such as containers is essential for usability.

However, this is challenging in an unconstrained setting. In Python, type parameters can be
used anywhere in generic class definitions, including in the type annotations of fields and method
parameters and return values. If the types of all variables are known beforehand, it is easy to infer
and check the types of type parameters based on the usage of fields and methods. This is what type
checkers do, given existing type annotations and soundly inferred types.

However, in type prediction on untyped codebases, the types of a large number of variables
are not known a priori and cannot be soundly inferred. In this case, accurately predicting the type
parameters of one expression’s predicted class entails accurately predicting the types of related
expressions associated with those type parameters. But that set of related expressions—the ones
representing the use of a type parameter—cannot be determined before the base class is predicted!
For instance, consider the statements a = x[y]; a += 1.If x is a dict, this tells us x’s second
type parameter should be an int, say dict[?,int]. On the other hand, if x is a 1ist, this gives us
information about its first type parameter (1ist[int]). Further, x could be some user-defined class
that extends 1ist[int] but does not contain type parameters itself.

However, compared with arbitrary type parameters, a large portion of type parameters are
used in containers, the designated use case of generics in PEP 484. Specifically, within the 1558
parameterized generic classes in the type annotations of the ten most popular typed pure-Python
packages mentioned above, 1114 (71.50%) were parameterizations of containers, including concrete
classes such as 1ist and dict, and protocols such as Iterable and Callable.” Although generics
were designed to express “type information about objects kept in containers that cannot be statically
inferred generically” in PEP 484, many container type parameters have semantics corresponding to
specific syntactical constructs in Python code. For example, given thaty : 1ist[T], both y[i] (for
i: int)and the x in for x in y have types equivalent to the type variable T. We exploit this to
predict container type parameters in a syntax-directed manner.

4.3.1 Modeling Container Type Parameter Semantics. Based on the insight above, we model the
semantics of container type parameters using relations. For example, in dict[K,V], the type
parameter K has the type of the keys and iteration targets of the dictionary, while V has the
type of the values of the dictionary. We represent K’s and V’s semantics with the relation sets
R(K) = {KeyOf, IterTargetOf} and R(V) = {ValueOf}, respectively. A complete description of

5The top five remaining parameterized non-container generic classes were 9.76% Optional for optional types, 6.80% Union
for union types, 5.32% Type for class objects, 1.60% 10 for IO streams, and 1.60% Literal for literal types.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 343. Publication date: October 2024.

QuAC: Quick Attribute-Centric Type Inference for Python 343:13

all relations can be found in Section 4.3.2 below. For each standard library container,® we have
specified its number of type parameters and the relation sets for each type parameter. QUAC retrieves
these in the call to GetRelationSetsOf TypeParameters on Line 4, Algorithm 2.

When analyzing the code, we associate (potential) container expressions with semantically
related expressions based on syntax-directed, type-agnostic association rules for each relation. We
store these associations in the directed graph G,. As an example, given e; = e;[e;] in source code,
(e, €2, {KeyOf}), (eq, e3, {ValueOf}) € G,, even if the types of ey, e;, and e; are unknown.

We also extend the notion of our typing constraint subsets (Section 4.2.2) to include node relations.
For instance, if (e1, e5) € Gs and (e, e;, R) € G,, we assume e; is also related to e/2 via the relations
in R. In Algorithm 2, given a set of expression nodes E, which is extended to E’ (Line 2), we may
predict c to be a container class. In this case, for the relation set R of a type parameter of ¢, we can
obtain E”, the set of all expressions associated with the nodes in E’ via the relations in R (Line 5).
This allows us to recursively predict the type of the type parameter (Line 6).

4.3.2 Supported Relations. For each relation, we describe its semantics and provide example
containers whose type parameters have this relation. We also describe when we associate a potential
container expression e with another expression e’ via the relation, with reference to Algorithm 3.

e KeyOf, ValueOf. A type parameter has KeyOf or ValueOf if it is the type of the indexing
expression or indexed result, respectively, in non-slicing indexing operations. For example, ValueOf €
R(T) for 1ist[T1, KeyOf € R(K),ValueOf € R(V) for dict[K,V]. In Algorithm 3, we make
associations for 1ist and dict construction (Line 9) and non-slicing indexing operations (Line 35).

e IterTargetOf. A type parameter has IterTargetOf if it is the type of the iteration target
of an instance of that container: given the for-loop for x in vy, x is the iteration target of
y. For example, IterTargetOf € R(T) for 1ist[T], IterTargetOf € R(K) for dict[K,V], and
IterTargetOf € R(Y) for Generator[Y,S,R]. In Algorithm 3, we make associations for list,
set, and dict construction (Line 9), container membership checks (Line 20), values yielded from
generators (Line 42), and for-loops (Line 49).

e Element i Of. In Python, tuples are immutable and usually contain heterogeneous elements.
Reflecting this usage pattern, tuples are frequently constructed using the literal notation (e.g., (a, b,
c)). Python’s type annotation for tuples requires specifying the type of each tuple element — an n-
tuple with elements of types Ty, . . ., T,, has the type tuple[Ts,..., T,], where Element i Of € R(T;).
In Algorithm 3, we make associations for tuple construction (Line 9).

e Parameter i Of, ReturnValueOf. Python allows annotating simple callable objects (no vari-
adic arguments, keyword-only parameters) using Callable. Specifically, an object called with
n positional parameters of types Ti,..., T, and returning a value of type T, can be annotated
as Callable[[Ty,...,T,], T;], where Parameter i Of € R(T;),ReturnValueOf € R(T,). In Algo-
rithm 3, we make associations for calls (Line 31) and function definitions (Line 39).

e SendTargetOf. PEP 342 [Ewing and van Rossum 2005] allows values to be sent to generators,
which then become the results of yield expressions within the generator. S of Generator[Y,S,R]
captures the type of these values, i.e., SendTarget0f € R(S). In Algorithm 3, we make associations
for values sent to generators (Line 42).

e YieldFromAwaitTargetOf. PEP 380 [Ewing 2009] allowed one generator to delegate part of
its operations to another through the yield from expression. Later on, PEP 492 [Selivanov 2015]
introduced coroutines to Python, allowing one coroutine to obtain the result of another through the
await expression. In both cases, a value in one of the return statements of the second generator or
coroutine is assigned to the yield from or await expression of the first. R in Generator[Y,S,R]

%This includes typical containers (1ist, dict, etc.) as well as protocols such as Callable and Generator, which are not
strictly containers but are parameterized types.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 343. Publication date: October 2024.

343:14 Jifeng Wu, Caroline Lemieux

or Coroutine[Y,S,R] represents the type of this value, i.e., YieldFromAwaitTargetOf € R(R).In
Algorithm 3, we make associations for values “returned from” generators and coroutines (Lines 42,
45) and yield fromand await expressions (Lines 51, 52).

5 Implementation

QuAC is implemented in around 9k lines of Python code. Its core component is a Python AST visitor
that walks all statements and expressions to collect attributes (Section 4.2.1) and resolves function
calls (Section 4.2.3). We support all statements and expressions defined in Python 3.9 [Python
Software Foundation 2020]. Moreover, to resolve imports in the Python files being analyzed and to
add classes within imported standard library and third-party modules to the class query database
(Section 4.2.4), we also let the Python interpreter import the Python files being analyzed as modules
and use Python’s live object introspection capabilities. To build the class query database, we
store all candidate classes and their attributes in a document-term matrix [Anandarajan et al.
2019], which we implement our class query BM25 ranking function on top of. We also implement
a Typeshed lookup library based on typeshed_client [Zijlstra 2024] that parses the relevant
Typeshed type stubs on demand whenever a Typeshed lookup is required (ref. Section 4.2.3). We
used the provided reproduction packages to run the non-LLM baseline methods Stray [Sun et al.
2022] and HiTyper [Peng et al. 2022] and the LLM-based type inference method TypeT5 [Wei et al.
2023]. We ran all methods within a Docker container on Ubuntu 20.04. The system has an Intel(R)
Core(TM) i7-12700K CPU (@3.6GHz) with 64GB RAM. Stray, QuUAC, and TypeT5 produce varying
results from run to run due to selecting different top-ranking type annotations. The run times of
the methods also vary from run to run. Thus, we have run each method five times and averaged
the results from each run to reduce variability. The code, benchmarks, and data replication scripts
are available on Zenodo [Wu and Lemieux 2024].

6 Evaluation
6.1 Research Questions

We investigate the following questions in our evaluation. RQs (1) and (2) measure our core criterion
of coverage and accuracy for type inference tools. RQs (3) and (4) evaluate QuAC’s ability to predict
container type parameters and non-builtin types. RQ (5) evaluates QuAC’s run-time performance.
RQs (6) and (7) evaluate whether QuAC and the non-LLM baselines display similar or distinct
patterns in making type predictions. RQ (8) evaluates how predictions would differ from human-
written annotations on annotated projects. Finally, RQ (9) investigates whether QuAC still maintains
competitiveness in the era of LLM-based type inference methods.

(1) What coverage can QuAC achieve?

(2) What accuracy can QuAC achieve?

(3) How well does QuAC predict container type parameters?

(4) How well does QuAC predict non-builtin types?

(5) What is the run-time performace of QuAC?

(6) Do QUAC and the non-LLM baselines make correct type predictions for the same or different
typing slots?

(7) What are the main failure modes of QuUAC?

(8) How well does QuAC match existing type annotations on typed benchmarks?

(9) How does QuAC compare to an LLM-based method?

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 343. Publication date: October 2024.

QuAC: Quick Attribute-Centric Type Inference for Python 343:15

6.2 Baselines and Benchmarks

We evaluate QuAC against the state-of-the-art non-LLM methods Stray [Sun et al. 2022] (a
static method) and HiTyper [Peng et al. 2022] (a hybrid ML method) using popular pure-Python
projects [Libraries.io 2023] with greatly varying project sizes as benchmarks. We believe they are
representative of real-world Python projects. Table 1 describes key statistics of the benchmarks. We
evaluate RQs (1)-(6) on untyped and typed benchmarks, RQ (7) on only the untyped benchmarks,
and RQ (8) on only the typed benchmarks. We compare QuAC to the recent LLM-based type
inference method TypeT5 [Wei et al. 2023] on untyped and typed benchmarks in RQ (9).

Table 1. Statistics of the benchmarks used in our evaluation.

Repository Version Lines of Code Typing Slots GitHub Stars Dependent Packages
requests 2.31.0 5963 861 51K 60.2K
Pygments 2.15.1 104475 2135 1.5K 3.66K
boto3 1.28.10 7625 1319 8.61K 7.02K
gunicorn 21.2.0 6279 893 9.38K 131K
python-dateutil 282 15277 2133 1.93K 6.14K
Untyped pytz 2023.3 4961 374 297 6.36K
six 1.16.0 755 93 949 14.2K
pytest-cov 4.1.0 1358 228 1.64K 14.8K
notebook 7.0.0 306 30 11K 1.08K
peewee 3.16.2 6352 2083 10.6K 532
seaborn 0.12.2 25616 3436 11.6K 5.42K
click 8.1.6 7465 1208 15.1K 23.7K
flake8 4.0.1 4431 558 3.34K 11.9K
Flask 2.3.2 6412 840 66.9K 8.22K
ipython 8.14.0 50979 5845 16.2K 5.7K
Jinja2 3.1.2 10993 1859 9.97K 10.7K
Typed .
pre_commit 333 5038 833 12.3K 0
pylint 2.17.4 38784 4552 5.18K 5.05K
sphinx 7.1.0 52021 9644 6.15K 82
urllib3 2.0.4 7009 969 3.7K 10.3K
Werkzeug 2.3.6 17774 2432 6.56K 2.37K

6.3 Evaluation Criteria

Previous work on type inference for Python [Allamanis et al. 2020; Mir et al. 2022; Peng et al. 2022]
have evaluated their methods on Python projects with type annotations, using two main criteria for
correctness. First, Exact Match: a type prediction completely matches an existing type annotation.
Second, Match to Parametric: a type prediction completely matches an existing type annotation
when ignoring all type parameters (i.e., 1ist[int] and list[str]).

However, these may be too strict for Python’s duck typing philosophy. For example, a value passed
to the parameter params in Listing 4 need not exactly be dict[str,bool]: it could be any “dict-like”
type whose items method returns a Iterable[tuple[str,bool]]. Thus, Mapping[str,booll],
which parameterizes the protocol Mapping for “dict-like” classes, would be a perfectly valid type
prediction. However, this type prediction would be incorrect based on the criteria above.

Listing 4. Example of too-strict annotation inspired by method keyword_arguments_for of class FileProces-
sor in module flake8.processor; some code simplified and some elided for brevity.

1 def keyword_args_for(params: dict[str,bool], args: ...) -> ...:
2 for param, required in params.items():
3 args[param] = getattr(self, param)

Typilus [Allamanis et al. 2020] also proposed a third criterion, Type Neutral. Type Neutral means
that a type prediction is correct if replacing the ground truth with it does not yield a type error.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 343. Publication date: October 2024.

343:16 Jifeng Wu, Caroline Lemieux

Typilus approximates type neutrality by building a type hierarchy for the types in its training corpus,
assuming universal covariance of type parameters. In this approximation, they say a prediction
is Type Neutral if the predicted type is a non-object supertype of the type annotation. This
approximation is not robust as a non-object supertype may not provide all the attributes being
accessed on an expression and its derived expressions. For example, while Mapping[str,bool]isa
correct type prediction for params under this approximation, so would Mapping[object,object]
and Container[object]. The former is wrong since it suggests that the type of its keys—param
in Listing 4—is object. However, given the usage getattr(self, param), param must be of the
more specific type str. The latter, Container[object], is wrong as it doesn’t provide the items
method called on params.

More importantly, the Exact Match, Match to Parametric, and Type Neutral metrics all require
Python projects to have existing type annotations, but a major goal for type inference for Python is
to predict types for previously unannotated projects. Thus, we need a metric to assess the correctness
of type predictions that is based on how expressions are actually used within the project, and would
work even if type annotations are unavailable.

To achieve this goal, in addition to using the Exact Match and Match to Parametric metrics
on typed benchmarks, we also adapt the Correctness Modulo Type Checker metric proposed in
Typilus [Allamanis et al. 2020] and used in a recent evaluation of type inference methods for
TypeScript [Yee and Guha 2023], on both untyped and typed benchmarks. This approach delegates
the task of checking type predictions to type checkers, whose best effort has been demonstrated to
be reasonably effective in practice [Gao et al. 2017]. Specifically, we use mypy [mypy Developers
2024], which introduced optional typing into Python and strongly inspired Python’s type annotation
syntax. This can be seen as an alternative implementation of the Type Neutral metric in Typilus
that does not require ground truth type annotations.

6.4 Results

We run QuAC and the baselines on the benchmarks in Table 1. The results are as follows.

6.4.1 What coverage can QuAC achieve? To investigate QuAC’s ability to predict type annotations,
we analyze the number of typing slots with non-trivial (not None or Any) type predictions, as
presented in the “# Type Preds.” column in Table 2. We see that Stray lags behind both HiTyper
and QuAC regarding the total number of non-trivial type predictions, indicating Stray’s relative
ineffectiveness in achieving high coverage. On the other hand, QuAC and HiTyper make a compa-
rable number of non-trivial type predictions on all benchmarks, with QuAC having a significant
edge on some benchmarks (peewee, seaborn, Werkzeug). On peewee, HiTyper fails to generate a
type dependency graph, leading to no predictions for this benchmark. These results show that
despite having a relatively simple design, QuAC is robust and on par with a non-LLM ML method
at achieving high coverage. In fact, in terms of total errorless non-trivial type predictions across
our benchmarks, QuAC exceeds HiTyper. On average, over all benchmarks, QuAC adds errorless
non-trivial types to 34% of the typing slots in Table 1, compared to 28% by HiTyper.

6.4.2 What accuracy can QuAC achieve? We then investigate the correctness of these non-trivial
type predictions by examining the percentages of them that are correct via Correctness Modulo
Type Checker, as presented in the “% Errorless” column in Table 2. Although QuAC does not have
a clear advantage over HiTyper in the total number of non-trivial type predictions it makes, it
does consistently achieve a higher (or at least equal) errorless percentage on all benchmarks, as
well as the highest errorless percentage on all but three benchmarks (gunicorn, seaborn, Jinja2)
where Stray is higher. However, on these benchmarks, QuAC achieves 3.2X, 15.8%, 2.7X more
errorless non-trivial type predictions than Stray. These results suggest that QuAC’s design focuses

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 343. Publication date: October 2024.

QuAC: Quick Attribute-Centric Type Inference for Python 343:17

Table 2. The total number of non-trivial (i.e., not Table 3. Total number of container type pre-
None or Any) type predictions by each technique dictions with non-trivial type parameters (i.e.,
on each benchmark. % Errorless is the percent of list[int] rather than list). % Errorless is the
those predictions on which mypy raises no errors percent of those predictions on which mypy raises
(— means divide by zero). no errors (— means divide by zero).
Type Preds. % Errorless # Param’d. Preds. % Errorless
Repository S H Q S H Q Repository S H Q S H Q
requests 0 334 283 - 83.8 85.1 requests 0 22 34 - 59.1 67.4
Pygments 31 1127 1133 871 721 905 Pygments 5 205 395 100 268 911
boto3 249 565 39 898 724 915 boto3 29 51 45 848 726 804
gunicorn 104 387 350 885 765 837 gunicorn 4 37 33 500 487 788
python-dateutil 0 363 526 — 813 863 python-dateutil 0 32 63 — 500 77.8
pytz 6 119 102 667 8L5 863 pytz 0 4 12— 00 833
six 0 o 26 - - 923 six o 0 3 - - 100
pytest-cov 0 40 38 - 67.5 94.7 pytest-cov 0 6 5 - 33.3 100
notebook 0 19 7 - 100 100 notebook 0 4 4 - 100 100
peewee 0 0 726 - - 92.0 peewee 0 0 71 - - 85.9
seaborn 101 1199 1738 94.1 80.4 86.5 seaborn 8 150 309 87.5 70.7 75.1
click 0 694 603 — 84.3 92.4 click 0 51 69 — 62.8 89.9
flake8 109 210 226 80.9 71.9 84.5 flake8 29 39 38 62.8 61.5 79.0
Flask 40 226 305 76.5 82.7 87.7 Flask 6 17 30 76.7 52.9 56.7
ipython 0 2188 2367 — 80.4 88.5 ipython 0 224 314 — 63.0 82.7
Jinja2 310 816 886 92.8 81.0 86.9 Jinja2 20 83 89 80.0 53.0 81.7
pre_commit 0 584 453 — 755 850 pre_commit 0 77 82 — 675 817
pylint 0 1992 2294 — 64.1 82.8 pylint 0 204 265 — 48.5 80.6
sphinx 0 474 3755 — 952 99.1 sphinx 0 29 667 — 966 99.1
urllib3 0 415 451 — 836 894 urllib3 0 16 39 — 250 846
Werkzeug 0 626 1190 — 83 908 Werkzeug 0 42 147 - 524 837

on accuracy and, compared to Stray and HiTyper, predicts type annotations with higher overall
accuracy while not sacrificing the absolute number of predictions.

6.4.3 How well does QUAC predict container type parameters? Recall QuAC has special handling
for containers: recursively predicting their type parameters (ref. Section 4.3). We evaluate QuAC
on this front by recording the (1) total number of container types with non-trivial type parameters
predicted, and (2) the percentage of those which are errorless in Table 3.

Regarding the total number of predicted containers with non-trivial type parameters, QuAC and
HiTyper outperform Stray on all benchmarks. QuAC further outperforms HiTyper on all but four
benchmarks. Out of these predictions, QuAC’s are most likely to be errorless, exceeding HiTyper
on all benchmarks. Stray achieves slightly higher correctness than QuAC on four benchmarks, but
QuAC obtains higher coverage on these. This data suggests that QuAC’s approach to predicting
container type parameters is more effective than Stray and HiTyper.

6.4.4 How well does QUAC predict non-builtin types? Besides container type parameters, we also
study QuAC’s trends in predicting non-builtin types. By builtin types, we mean standard types built
into the interpreter and usable anywhere without the need for imports, such as int, list, and
str. Investigating such a research question is meaningful as static type inference methods may
prioritize builtin types [Sun et al. 2022]. Further, predicting non-builtin types is also one of the
bottlenecks of machine learning-based type inference methods. This is because each non-builtin
type tends to have low occurrence frequencies in their training sets, yet all such rare non-builtin
types account for a significant amount of annotations [Peng et al. 2022].

Table 4 shows the percentage of errorless non-trivial type predictions that are non-builtin types,
as well as the number of errorless non-builtin type predictions. Compared with Stray and HiTyper,
QuAC has a higher percentage of correct type predictions that are non-builtin on all benchmarks.
QUuAC also has a higher absolute number of correct non-builtin type predictions on all but two
benchmarks. This is in contrast with Stray and HiTyper, which fail to generate any errorless

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 343. Publication date: October 2024.

343:18 Jifeng Wu, Caroline Lemieux

Table 4. Percent (left) and total number of (right) errorless type ~ Table 5. Run times of each technique in

predictions that are non-builtin types. — means divide by zero. seconds.

% Preds. non-builtin # Non-builtin preds. Run Time (s)
Repository S H Q S H Q Repository S H Q
requests - 12.5 45.2 0 51 109 requests 80.7 48.5 104
Pygments 6.06 85 59.9 2 85 614 Pygments 2,606.1 365.4 62.9
boto3 69 101 644 22 62 233 boto3 28,534.6 79.2 7.8
gunicorn 7.3 86 420 10 42 123 gunicorn 193.3 81.5 22.9
python-dateutil — 51 46.0 0 67 209 python-dateutil 2709 154.8 19.6
pytz 1.1 295 557 3 54 49 pytz 38.1 243 2.8
six - - 292 0 0 7 six 6.6 1.9 15
pytest-cov - 164 69.4 0 9 25 pytest-cov 38.2 9.9 2.0
notebook - 74 143 0 2 1 notebook 13.3 9.4 1.6
peewee - - 56.6 0 0 378 peewee 3.2 2.1 20.2
seaborn 9.3 19.0 41.4 10 274 623 seaborn 5,400.0 259.4 193.9
click - 21.5 34.7 0 178 193 click 75.4 62.3 12,9
flake8 7.4 113 38.7 10 30 74 flake8 1025.1 52.7 7.2
Flask 11.7 23.2 49.5 5 72 132 Flask 944.4 56.3 115
ipython 0.0 12.1 314 0 428 658 ipython 3179.7 625.2 229.9
Jinja2 114 20.2 55.9 40 183 430 Jinja2 15166.2 81.5 23.8
pre_commit - 9.2 455 0 50 175 pre_commit 255.7 138.7 13.1
pylint - 18.6 64.4 0 412 1222 pylint 1860.8 511.3 206.3
sphinx - 20.8 52.6 0 126 1956 sphinx 2603.5 3892.9 426.7
urllib3 - 81 295 0 51 119 urllib3 148.0 76.9 14.8
Werkzeug — 133 303 0 119 327 Werkzeug 352.6 138.5 51.9

non-builtin type predictions on several benchmarks. Overall, the results demonstrate QuAC’s
propensity towards predicting correct non-builtin types, suggesting QuAC does not face the same
low-frequency non-builtin type bottleneck that many baseline techniques have.

6.4.5 What is the run-time performace of QUAC?. Table 5 presents the run times of each method on
each benchmark. We can see that QuAC outperforms HiTyper and Stray on all but one benchmark
and achieves geometric mean speedups of 3%, 14X over HiTyper and Stray on the untyped bench-
marks (4%, 18X on all benchmarks). On the benchmark where QuAC is slower, peewee, QuAC takes
20 seconds to run and predicts 726 non-trivial types; Stray and HiTyper run in 2-3 seconds but
predict no non-trivial types. Overall, QuAC’s design makes it more scalable in terms of project size
compared with Stray and HiTyper.

6.4.6 Do QuAC and the non-LLM baselines make correct type predictions for the same or different
typing slots? Continuing on this note, we look at whether Stray, HiTyper, and QuAC make correct
type predictions for the same or different typing slots. We analyzed the sizes of the sets of errorless
non-trivial typing slots for each method and each combination of methods over all benchmarks, as
shown in Table 6. Table 6 tells a story of there being little overlap between the typing slots where
Stray, HiTyper, and QuAC make errorless, non-trivial type predictions. This suggests that QuAC,
in general, makes accurate predictions on typing slots distinct from Stray and HiTyper. Following
the last research question, this difference may be partly driven by QuAC excelling at typing slots
where a non-builtin type prediction is correct. Overall, these results suggest it is worthwhile to
include QuAC in an ensemble complementing other type inference methods.

6.4.7 What are the main failure modes of QUAC?. We now investigate the main failure modes of
QuAC and other non-LLM methods. We present failure modes appearing more than once within
the five most error-prone typing slots for each method and each benchmark in Table 7.
Predictions Lacking Accessed Attributes. One of the main failure modes of Stray and HiTyper is
the inability to reject type predictions that do not provide accessed attributes. For example, the
parameter request of requests.cookies.MockRequest’s constructor (depicted below) is assigned

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 343. Publication date: October 2024.

QuAC: Quick Attribute-Centric Type Inference for Python 343:19

Table 6. Sizes of the sets of errorless non-trivial typing slots ~ Table 7. Categorized failure modes for
for each method and each combination of methods. The total the top five error-prone typing slots.
number of typing slots for each benchmark is in Table 1.

Repository S H Q S.H (IoU) S,Q (IoU) HQ (IoU) SHQ

requests 0 280 241 0 (0.00) 0(0.00) 169 (0.48) 0

Pygments 27 813 1026 25(0.03) 15(0.01) 485 (0.36) 15

boto3 224 409 362 122(0.24) 64(0.12) 183 (0.31) 49 Freq.

gunicorn 92 296 293 34(0.10) 57(0.17) 160 (0.37) 21 .

python-dateutil 0 295 454 0 (0.00) 0 (0.00) 172 (0.30) 0 Failure Mode S H Q

pytz 4 97 88 2(0.02) 4(0.05) 59 (0.47)

six 0 0 24 0 (0.00) 0(0.00) 0 (0.00) 0 Preds. Lacking Accessed Attrs. 10 26

pytest-cov 0 27 36 0 (0.00) 0 (0.00) 14 (0.29) 0 Built-in & Standard Lib. Constraints

notebook 0 19 7 0(0.00) 0(0.00) 6(0.30) 0 Over-constr'd Preds. 9

peewee 0 0 668 0 (0.00) 0 (0.00) 0 (0.00) 0 Over-reliance on Param. Def. Values 6

seaborn 95 964 1503 73(0.07) 59(0.04) 620 (0.34) 44 Union Types 1 13
Variable Changing Type 8

click 0 585 557 0 (0.00) 0 (0.00) 334 (0.41) 0 Class Query Database 7

flake8 88 151 191 36 (0.18) 48 (0.21) 71(0.26) 19 Query Algorithm 6

Flask 31 187 267 9(0.04) 20 (0.07) 105 (0.30) 8 Sparse, Generic Attributes 5

ipython 0 1758 2094 0 (0.00) 0 (0.00) 1063 (0.38) 0 Complex Python Oper. Semantics 4

Jinja2 288 661 770 183 (0.24) 125 (0.13) 374 (0.35) 92 Attribute Types 1 3

pre_commit 0 441 385 0 (0.00) 0 (0.00) 203 (0.33) 0 Instance Variables 3

pylint 0 1277 1898 0 (0.00) 0(0.00) 663 (0.26) 0

sphinx 0 451 3722 0 (0.00) 0(0.00) 271 (0.07) 0

urllib3 0 347 403 0 (0.00) 0(0.00) 232 (0.45) 0

Werkzeug 0 540 1080 0 (0.00) 0(0.00) 365 (0.29) 0

to the instance variable self._r, on which the attribute url is accessed. HiTyper’s type prediction,
dict[str,Any], is wrong as dict does not provide the attribute url.
1 def init__(self, request):

2 self._r = request
3 self._new_headers = {}
4 self.type = urlparse(self._r.url).scheme

Built-in and Standard Library Constraints. Stray also struggles with built-in and standard li-
brary constraints. There are several aspects to this failure mode. First, Stray cannot handle
some of the semantics of built-in types: e.g., the result of addition operations on strs should
be of type str. Second, Stray sometimes produces errors with container type parameter se-
mantics. For example, given that Stray predicts the class of a parameter d as dict and the re-
sult of d.get(’path’) as Any, Stray may predict the type of d as dict[Any,str] instead of
dict[str,Any], putting the type of dict’s keys in the second—not the first—type parameter.
Further, Stray does not consider typing information for standard library callables. For example,
given prefix = os.path.commonprefix(strs), Stray cannot determine that strsisa list, even
though the standard library function os.path.commonprefix accepts a 1ist of path names.

Over-constrained Predictions. HiTyper sometimes makes predictions that are over-constrained
given the intraprocedural typing context of the current function or method, and not generalizable
to interprocedural typing constraints. For example, HiTyper’s prediction of int as the type of the
reprname parameter of USTimeZone’s constructor is not wrong within the scope of the constructor
and class definition, but is overconstrained as objects of other types can be (and are) also passed to
that parameter, such as the string ’Eastern’ later in the same file.

1 class USTimeZone(tzinfo):

2 def __init__(self, hours, reprname, stdname, dstname):
3 self.stdoffset = timedelta(hours=hours)

4 self.reprname = reprname

5 # ...

6 Eastern = USTimeZone (-5, s ,)

Over-reliance on Parameter Default Values. HiTyper also tends to be over-reliant on parameter
default values, even if those default values are used as placeholders processed in separate code paths

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 343. Publication date: October 2024.

343:20 Jifeng Wu, Caroline Lemieux

and are not the same type as typical values passed to that parameter. This error mode frequently
occurs with Predictions Lacking Accessed Attributes or Over-constrained Predictions. For example,
HiTyper predicts the parameter fill_iter of pytz.lazy.lLazylList to be of type None given that
it has the default value None. However, this would result in typing errors given usages where the
parameter is passed non-None iterators, such as in the setUp method below.

1 class Lazylist:

2 def __new__(cls, fill_iter=None):

3 if fill_iter is None: return set()

4 class LazySet(set): ..

5 fill_iter = [fill_iter]

6 # ...

7 class LazylListTestCase(unittest.TestCase):
8 def setUp(self):

9

self.base = [3, 2, 1]
10 self.lazy = LazylList(iter(list(self.base)))

Union Types. A failure mode affecting QuAC, and to a lesser extent, Stray and HiTyper, is the
inability to predict union types. This often occurs when a parameter is involved in isinstance
checks guarding different branches (such as in the handle_error below), or when a function
returns values of different types from different branches. In this situation, Stray and HiTyper
might only return one of the constituting types as its type prediction. In contrast, QuAC pools the
attributes from different constituting types together and makes a type prediction based on that
merged attribute set, which may or may not be a constituting type. This is because QuAC’s analysis
is control-flow insensitive and does not support type narrowing [mypy Developers 2024] (narrowing
a broader type to a more specific type on program branches).

1 def handle_error(self, req, client, addr, exc):
2 if isinstance(exc, InvalidRequestline):

3 elif isinstance(exc, InvalidRequestMethod):
4 elif isinstance(exc, InvalidHTTPVersion):

Variable Changing Type. In Python, a variable can be transformed to a different type. For instance,
a parameter X may originally be a 1ist, but after X = torch.Tensor (X), Xis now a torch.Tensor.
In QuAC, this may lead to both the attributes of 1ist and torch.Tensor being in X’s attribute set,
and as a result, the query algorithm may determine the type of the parameter X to be torch.Tensor
instead of list.

Class Query Database. QuAC’s class query database for each project records the attributes of
built-in classes, standard library protocols, and other classes defined in, or accessible via inputs,
within that project. This is not enough for some use cases. For instance, Python’s standard library
doesn’t include all possible protocols that may be used in real-world projects, such as a hypothetical
generic container protocol supporting indexing that could be seen as an abstract base type for both
sequence (e.g., 1ist) and mapping (e.g., dict) types. On the other hand, our class query database
doesn’t record possible dynamic attributes accessed on class instances via the __getattr__ or
__getattribute__ methods, and a large portion of such dynamic attributes in an attribute set
would lead to inaccuracies in a class query.

Query Algorithm. QuAC’s use of BM25 in the class query process also has drawbacks. Given
a relatively small attribute set, it may rank a smaller class missing some attributes higher than a
larger class containing all the attributes. This can be attributed to the small attribute set (small n)
exacerbating the effect of |C| (class length) on the class’s BM25 score in Equation 1.

Sparse, Generic Attributes. In some cases, a very limited number of attributes not indicative of a
particular class are accessed on a variable. For example, in the function sep below, the parameter s’s
attribute set only contains __mul__, occurring in both numeric and sequence types in the Python
standard library. Given this single attribute, it is challenging for QuAC to accurately predict that s

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 343. Publication date: October 2024.

QuAC: Quick Attribute-Centric Type Inference for Python 343:21

should be of the type str, a conclusion that one can reach by considering the natural language
semantics of the function name sep and the names of its variable stream, sep_total, etc.

1 def sep(stream, s, txt):

2 if hasattr(stream,): stream.sep(s, txt)

3 else:

4 sep_total = max(70 - 2 - len(txt), 2)

5 sep_len = sep_total // 2; sep_extra = sep_total % 2
6 out = f

7 stream.write(out)

Complex Python Operational Semantics. Python’s operators have complex run-time behavior that
can only be precisely determined given the operands’ types, and, in some cases, even the values.
For example, a class may define methods supporting binary arithmetic or comparison operations
where the left and right-hand sides are not the same type, such as a datetime.datetime object
defining __add__ (the method supporting addition) accepting a datetime. timedelta object—not
a datetime.datetime object—as its right-hand side. Furthermore, although both sequence and
mapping types support indexing operations, indexing a sequence object with a range or tuple
(eg,[’a’, ’b’, ’c’1[1:2]) performs slicing, while indexing a mapping object (e.g. dict) with a
range or tuple treats the range or tuple as a key and looks up its value.

Attribute Types. QUAC associates expressions with attribute sets, considering the presence of
attributes but not their types. This sometimes leads to errors. For example, when predicting the
type of the return value of the method _filter_subplot_data depicted below, QUAC determines
it has the attribute set {columns, index, __getitem__} (df is returned from the function, and
these attributes are accessed on df), and then predicts the class os.terminal_size. However,
given df.columns.intersection([’col’, ’row’]), df’s columns attribute should be a type that
provides the intersection method accepting a 1ist of str objects, while os. terminal_size’s
columns attribute is simply a property of type int. Thus, predicting os.terminal_size is wrong.
1 def _filter_subplot_data(self, df, subplot):

2 dims = df.columns.intersection ([) 1)

3 if dims.empty: return df

4 keep_rows = pd.Series(True, df.index, dtype=bool)
5

6

for dim in dims: keep_rows &= df[dim] == subplot[dim]
return df[keep_rows]

Instance Variables. Many classes have instance variables initialized from constructor parameters
and accessed via name lookups on self. However, QUAC does not construct equivalence rela-
tionships between the constructor’s parameters and the instance variables accessed later. This
makes QuAC unable to associate the attribute requirements of the instance variables with those
of their corresponding constructor parameters. For example, when predicting the type of the pa-
rameter session of ServiceDocumenter’s constructor initializing self._boto3_session, we can
only record that session has the attribute _session (Line 3), but miss out the attributes client,
get_available_resources, and resource (Lines 5,7,8). This leads to inaccuracies in predicting
the types of such constructor parameters.

1 class ServiceDocumenter (BaseServiceDocumenter):
2 def __init__(self, service_name, session, root_docs_path):

3 super().__init__(service_name=service_name, session=session._session,
root_docs_path=root_docs_path)

4 self._boto3_session = session

5 self._client = self._boto3_session.client(service_name)

6 self._service_resource = None

7 if self._service_name in self._boto3_session.get_available_resources():

8 self._service_resource = self._boto3_session.resource(service_name)

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 343. Publication date: October 2024.

343:22 Jifeng Wu, Caroline Lemieux

Table 8. Exact Match and Match to Parametric 100 | T
metrics for non-trivial type annotations.] | e %_
© 103
o I
% Exact Match % Match to Parametric e 1 M -7 T N
i 102 i
Repository S H Q S H Q é Stray ~
click 00 264 347 00 307 394 10t Hilyper
flake8 158 191 211 195 254 324 QuAC
Flask 21 178 243 26 193 274 TypeTs
ipython 00 206 420 00 237 485 100 L ‘ : ‘ : ‘
Jinja2 86 255 311 89 284 359 0 20000 40000 60000 80000 100000
pre_commit 0.0 36.6 26.9 0.0 45.0 36.6 Lines of Code
pylint 00 208 252 00 240 299
sphinx 00 30 220 00 35 296
urllib3 00 268 285 00 278 300 . . .
Werkzeug 00 201 336 00 214 371 Fig. 2. Log scale run time of each technique (y-

axis) and lines of code in each benchmark (x-axis).

6.4.8 How well does QUAC match existing type annotations on typed benchmarks? We compare
Stray, HiTyper, and QuAC on matching existing type annotations on typed benchmarks using
the Exact Match and Match to Parametric metrics for non-trivial annotations in Table 8. QuAC
demonstrates a significant improvement in Exact Match and Match to Parametric performance over
both Stray and HiTyper, outperforming Stray on 10/10 and HiTyper on 9/10 benchmarks. QuAC
averages net percent increases of 7.3% (Exact Match) and 9.8% (Match to Parametric) over HiTyper,
and 26.3% (Exact Match) and 31.6% (Match to Parametric) over Stray.

Table 9. Comprehensive comparison of QUAC and TypeT5 under Correctness Modulo Type Checker.

Type Preds. % Preds. Errorless Run Time (s) # Param’d. Preds. % Param’d. Errorless % Non-builtin
Repository Q T Q T Q T Q T Q T Q T
requests 283 491 85.1 94.5 10.4 932.1 34 31 67.4 83.0 45.2 22.8
Pygments 1133 1637 90.5 92.2 62.9 8237.0 395 58 91.1 76.7 59.9 33.5
boto3 396 871 91.5 96.3 7.8 1015.0 45 11 80.4 96.4 64.4 27.2
gunicorn 350 605 83.7 94.0 22.9 1476.7 33 8 78.8 90.0 42.0 22.0
python-dateutil 526 839 86.3 91.4 19.6 3878.6 63 17 77.8 82.8 46.0 11.6
pytz 102 148 86.3 87.3 2.8 486.1 12 2 83.3 100.0 55.7 26.6
six 26 73 92.3 94.5 15 235.9 3 3 100.0 100.0 29.2 19.5
pytest-cov 38 77 94.7 81.6 2.0 158.6 5 4 100.0 100.0 69.4 28.1
notebook 7 27 100.0 100.0 1.6 78.4 4 3 100.0 100.0 143 23.3
peewee 726 1699 92.0 94.3 20.2 5113.6 71 63 85.9 82.0 56.6 30.1
seaborn 1738 2709 86.5 94.9 193.9 4854.1 309 142 75.1 83.5 41.4 36.6
click 603 1087 92.4 98.2 12.9 1401.2 69 275 89.9 100.0 34.6 55.0
flake8 226 435 84.5 93.7 7.2 584.2 38 128 78.9 90.5 38.7 27.5
Flask 305 751 87.7 95.0 115 942.3 30 135 56.7 99.7 49.5 62.6
ipython 2367 3774 88.4 91.8 229.9 10914.0 314 402 82.7 83.3 31.4 13.7
Jinja2 886 1651 86.9 97.3 23.8 4119.7 89 263 81.7 99.9 55.9 58.7
pre_commit 453 748 85.0 97.0 13.1 1071.6 82 232 81.7 94.2 45.5 29.6
pylint 2294 3400 82.8 90.6 206.3 11228.7 265 616 80.6 84.2 64.3 38.8
sphinx 3755 7182 99.1 99.7 426.7 20808.5 667 1128 99.1 99.9 52.6 29.7
urllib3 451 769 89.4 91.9 14.8 1590.7 39 172 84.6 88.1 29.5 30.4
Werkzeug 1190 2102 90.8 97.4 519 4456.6 147 516 83.7 99.4 30.3 42.6

6.4.9 How does QuAC compare to an LLM-based technique? Recently, Large Language Models
(LLMs) trained on code have been applied to various software analysis tasks, including type
prediction. In particular, TypeT5 [Wei et al. 2023] was recently proposed for type prediction
targeting both Python and JavaScript. TypeT5 is based on CodeT5 [Wang et al. 2021], an LLM
trained by SalesForce. CodeT5 is pre-trained on the CodeSearchNet [Husain et al. 2019] corpus,
which itself is extracted from open-source projects from GitHub, featuring popular packages
from Libraries.io [Libraries.io 2023]. In the evaluation on their datasets, CodeT5 gets a net 25-34%
increase in accuracy over HiTyper, and TypeT5 a further 4-5% increase in accuracy over CodeT5.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 343. Publication date: October 2024.

QuAC: Quick Attribute-Centric Type Inference for Python 343:23

Table 10. Intersections between the errorless non-trivial typ- ~ Table 11. Comparison of QuUAC and
ing slots of TypeT5 and other methods, and the percentages of ~ TypeT5 in matching existing non-trivial
TypeT5’s covered by other methods. type annotations, under Exact Match

and Match to Parametric.

Repository T ST HT QT % S,T/T % HT/T % QT/T

requests 464 0 273 231 0.0 58.9 49.8

Pygments 1509 26 715 940 1.7 47.4 62.3

boto3 839 208 406 350 248 48.4 417

gunicorn 569 89 290 283 157 51.0 49.8 % Exact Match % Match to Parametric

python-dateutil 767 0 203 441 0.0 382 575

pytz 129 4 71 72 3.1 55.0 55.7 Repository Q T Q T

six 69 0 0 23 0.0 0.0 333 -

pytest-cov 63 0 25 26 0.0 398 414 click 347 525 394 52.5

notebook 27 0 19 7 0.0 704 259 flakes 211 580 324 64.6

peewee 1601 0 0 612 0.0 0.0 38.2 Flask 243 455 274 45.5

seaborn 2571 91 933 1422 35 36.3 55.3 ipython 420 60.1 435 643
Jinja2 311 521 359 52.1

click 1067 0 571 540 0.0 535 506 pre_commit 26.9 854 366 88.1

flakes 408 83 147 176 203 36.0 43.1 pylint 252 420 299 16.7

Flask 713 31 185 246 43 25.9 345 sphinx 220 58.1 296 63.2

ipython 3464 0 1643 1906 0.0 47.4 55.0 urllib3 285 451 300 19.7

Jinja2 1607 277 644 744 17.2 40.1 463 Werkzeug 33.6 485 371 192

pre_commit 725 0 437 367 0.0 60.2 50.6

pylint 3078 0 1201 1773 0.0 39.0 57.6

sphinx 7163 0 375 3568 0.0 5.2 498

urllib3 707 0 326 376 0.0 46.1 53.2

Werkzeug 2046 0 532 1058 0.0 260 517

A natural question is thus how QuAC compares to TypeT5 on our benchmarks. We note that as
our benchmarks are popular Python repositories, it is possible that CodeT5, the LLM underlying
TypeT5, has trained on them.

We report the comparison in Table 9. First, let’s look at Columns 1-2 reporting the total number
of non-trivial type predictions and Columns 3-4 reporting the percent of those on which mypy
raises no errors. Over both untyped and typed benchmarks, TypeT5 emits more non-trivial type
predictions than QuAC—1.9X on average. TypeT5’s predictions are also more correct than QuAC
on all benchmarks except pytest-cov. Looking at matching existing non-trivial type annotations
on typed benchmarks in Table 11, we also see that TypeT5 outperforms QuAC on all benchmarks.
However, TypeT5’s increases in coverage and accuracy come with a heavy run time cost (Columns
5-6, Table 9 and Figure ??). TypeT5 takes significantly longer than QuAC to predict types on all
benchmarks, from 25X on seaborn to 254x on peewee. The geometric mean of TypeT5’s run time
over QuAC’s is a staggering 92X, greatly exceeding TypeT5’s coverage and accuracy increases.

A more interesting story emerges when looking at the number of parameterized containers
in Columns 7-8, Table 9. TypeT5 builds on top of CodeT5, which is capable of predicting both
parametric and user-defined types [Wei et al. 2023]. On all untyped benchmarks, QuAC has a higher
number of parameterized containers (on average 6.1%, 2.9% of all typing slots in Table 1 for QuAC
and TypeT5). Though TypeT5 has higher correct percentages over nearly all benchmarks (Columns
9-10, Table 9), this does not make up for the much smaller number of parameterized containers
on most untyped benchmarks. However, on the typed benchmarks, TypeT5 has a higher number
of parameterized containers (on average 5.9%, 17.5% of all typing slots for QuAC and TypeT5).
The difference between the results on untyped and typed benchmarks suggests there is a shift in
performance depending on whether type annotations are present in CodeT5’s training data. To
validate this, we compare whether the difference in mean percentage of parameterized containers
differs over all untyped vs. all typed benchmarks. A two-tailed t-test yielded p = 0.91 > 0.05 on the
difference between these means for QUAC, and p = 1.85 X 107> <« 0.05 for TypeT5.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 343. Publication date: October 2024.

343:24 Jifeng Wu, Caroline Lemieux

We see a similar shift in the results over untyped and typed benchmarks when looking at the
percentages of errorless non-trivial type predictions that are non-builtin (Columns 11-12, Table 9).
TypeT5 achieves parity with QuAC on the typed benchmarks, but QuAC has higher percentages
on most (10/11) untyped benchmarks. On average, the mean percentages of errorless non-trivial
type predictions that are non-builtin are 47.6% and 25.6% for QuAC and TypeT5 on the untyped
benchmarks and 43.2% and 38.9% for QuAC and TypeT5 on the typed benchmarks. A two-tailed
t-test yielded p = 0.49 > 0.05 on the difference between these means for QuAC and p = 0.03 < 0.05
for TypeT5. Again, there is a clear, and statistically significant, difference in the distribution of
TypeT5’s predictions between the untyped and typed benchmarks.

Unlike the non-LLM baselines, where QuAC’s errorless non-trivial type predictions were com-
plementary to those of the other techniques, TypeT5 covers most of Stray’s, HiTyper’s, and QuAC’s
errorless non-trivial type predictions. Looking at Table 10, we see that Stray, HiTyper, and QuAC
cover 4.3%, 39.3%, 47.8% of TypeT5’s errorless non-trivial type predictions on average. Interestingly,
QuAC not only captures the largest share of TypeT5’s errorless non-trivial type predictions on
average but also does so in a consistent manner (standard deviation 9%, versus 19% for HiTyper).

Overall, our evaluation is consistent with the large lines of TypeT5’s: the LLM-based approach
has higher coverage and high overall accuracy. However, at the project level, these accuracies are
lower than on the BetterTypes4Py/InferTypes4Py datasets. We also observe some distribution shifts
in performance on typed vs. untyped projects when we look at container type parameters and
non-builtin types. Finally, the run time cost of TypeT5 is much higher than QuAC and even HiTyper.
On average, QuAC covers 47.8% of the LLM-based method’s errorless non-trivial type predictions,
with a run time 1/92X that of the LLM-based method, demonstrating QuAC’s efficiency.

7 Discussion
7.1 Future Research Directions

Based on the failure modes discussed above, there are several directions for future work.

Type Checker Integration. An important future research direction would be to reimplement QuAC
based on a Python type checker, such as mypy [mypy Developers 2024]. These type checkers
support more complex and precise internal representations and static analysis procedures that
provide better support for Python’s semantics and would be beneficial in addressing QuAC’s failure
modes of Union Types, Variable Changing Type, Instance Variables. Additionally, this would allow
us to check and filter class predictions made by QuAC’s BM25 query algorithm to find a class
prediction that type checks. Such a design would help reduce the occurrence of some of QUAC’s
other failure modes related to the imprecision of the Top-1 queried class, such as Query Algorithm,
Sparse, Generic Attributes, Complex Python Operational Semantics, and Attribute Types.

Including QuUAC Within a Hybrid or Ensemble Method. Another interesting future research di-
rection would be to include QuAC as part of a hybrid LLM-Symbolic type inference method or in
an ensemble complementing other type inference methods. This is feasible as QuAC is successful
on typing slots expecting a non-builtin type, in contrast to the rare types issue faced by machine
learning-based type inference methods (Section 6.4.4), and its correct typing slots complement non-
LLM baselines (Section 6.4.6). Moreover, this enables using machine learning-based type inference
methods, especially LLM-based ones, to leverage natural language cues and overcome QuAC’s
Sparse, Generic Attributes failure mode. On the other hand, including QuAC also has the potential to
improve performance and mitigate the effects of potential training bias when running on a diverse
set of benchmarks compared to a purely LLM-based method.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 343. Publication date: October 2024.

QuAC: Quick Attribute-Centric Type Inference for Python 343:25

7.2 Threats to Validity

The threats to internal validity lie in our implementations of type inference techniques and experi-
ment scripts. To mitigate these threats, we reuse the existing reproduction packages for Stray [Sun
et al. 2022], HiTyper [Peng et al. 2022], and TypeT5 [Wei et al. 2023]. We adopt a modular, functional
coding style when developing QuAC and unit-test QuUAC’s components. Moreover, the imple-
mentations of Stray and QuAC require all of a project’s dependencies to be installed beforehand.
Therefore, we manually curate the dependencies of each benchmark in Section 6.2 and install all
dependencies before running each type inference technique on a benchmark.

The threats to external validity lie in the baselines and benchmarks used in the evaluation. To
reduce the threat, in terms of the baselines, we have used the state-of-the-art non-LLM approaches
Stray [Sun et al. 2022] and HiTyper [Peng et al. 2022], representative static and machine learning
techniques found to outperform other approaches in their evaluations, as well as a recent LLM-based
approach, TypeT5 [Wei et al. 2023]. We did not evaluate the recent machine learning technique
DLInfer [Yan et al. 2023], as it can only predict types for function parameters but not return values,
and does not generate results for arguments if developer-provided type annotations are absent [Guo
et al. 2024]. Concerning the benchmarks, we compiled a benchmark set in Section 6.2 consisting of
several popular real-world projects spanning different domains and having vastly different project
sizes that reduces the threat of selection bias. Moreover, including untyped projects follows the
approach of a recent evaluation of type inference methods for migrating JavaScript codebases to
TypeScript [Yee and Guha 2023]. It is justified as our motivating problem is similar—migrating
untyped Python programs to type-annotated Python.

The threats to construct validity may come from our Correctness Modulo Type Checker criteria
used on untyped Python benchmarks. To mitigate this, we have adopted the well justified approaches
proposed in previous work [Allamanis et al. 2020; Yee and Guha 2023]. To prevent the effect of
trivial type annotations such as Any hiding type errors and allowing more code to type check, we
only type check non-trivial type annotations made by the type inference methods. As an additional
mitigation, we have included a comparison in matching existing non-trivial type annotations on
typed benchmarks under Exact Match and Match to Parametric.

8 Related Work
8.1 Static Type Inference Methods for Dynamic Languages

There are various static type inference methods for dynamic languages, including theoretical models
such as gradually-typed lambda calculus [Campora et al. 2017; Castagna et al. 2019; Garcia and
Cimini 2015; Migeed and Palsberg 2019; Miyazaki et al. 2019; Phipps-Costin et al. 2021; Siek and
Vachharajani 2008], and real-world languages such as Python [Cannon 2005; Google 2024; Hassan
et al. 2018; Maia et al. 2012; Meta 2024; Microsoft 2024; Salib 2004; Sun et al. 2022; Vitousek et al.
2014; Wang 2022], JavaScript [Anderson et al. 2005; Chandra et al. 2016; Jensen et al. 2009; Rastogi
et al. 2012], and Ruby [Furr et al. 2009; Kazerounian et al. 2020]. These methods usually employ
rule-based methods, data-flow analysis, and hand-coded heuristics to generate a set of typing
constraints and infer types by computing solutions to these typing constraints. Despite aiming to be
“correct by design” and achieving relatively high accuracy with simple types under simple typing
contexts, they may only support a subset of their target languages [Anderson et al. 2005; Chandra
et al. 2016], and may struggle with the dynamic nature of those languages [Richards et al. 2010],
thus negatively affecting their coverage. Furthermore, generating and solving constraints may be
computationally expensive, limiting their applicability on large-scale codebases.

Compared with static type inference methods, QUAC employs fewer hard-coded rules and
heuristics and is more data-driven. Although theoretically unsound, QuAC achieves much higher

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 343. Publication date: October 2024.

343:26 Jifeng Wu, Caroline Lemieux

coverage and competitive accuracy in our experimental evaluation against Stray, the state-of-the-
art static type inference method for Python. Furthermore, QuAC, by virtue of only employing a
lightweight static analysis, is highly performant and scales well to large-scale codebases.

8.2 Machine Learning-based Type Inference Methods for Dynamic Languages

Recent type inference methods for dynamic programming languages tend to employ machine
learning techniques to handle the complexities and nuances of dynamic languages and enhance
type inference coverage and accuracy.

In the research domain of type inference for Python, Xu et al. [Xu et al. 2016] introduced
probabilistic type inference, offering multiple candidate types for variables by leveraging natural
language cues and context within the code. DeepTyper [Hellendoorn et al. 2018] regards types
as word labels and uses an RNN-based sequence model to predict types from a pre-defined type
vocabulary. Dash et al. [Dash et al. 2018] introduce “conceptual types” which refine a single type
such as str into more semantically detailed types such as url and phone.

However, ML-based techniques face their own set of challenges. Notably, they struggle to balance
correctness and coverage, often generating a set of potential types, of which only a fraction
are accurate in a given context. Additionally, ML-based techniques face difficulties in accurately
predicting non-builtin types with minimal occurrences in datasets, leading to a pronounced drop
in accuracy for those outlier types [Mir et al. 2021].

Recent works on machine learning-based type inference for Python focus on mitigating these
issues. TypeWriter [Pradel et al. 2020] uses four separate sequence models to recommend types in
Python and includes a validation phase using type checkers to filter out most wrong predictions.
Given a non-type checking prediction, it searches its solution space for an alternative. Typilus [Al-
lamanis et al. 2020] uses a graph model to represent code and utilizes meta-learning to recommend
types from an open vocabulary. However, the method still requires that components of the predicted
types are present in the training set. HiTyper [Peng et al. 2022] records type dependencies among
variables in type dependency graphs and leverages type inference rules to validate predictions made
by neural networks. DLInfer [Yan et al. 2023] collects slice statements for variables and uses a
sequence model to predict types. Finally, TypeT5 [Wei et al. 2023], a recent large language model
(LLM)-based approach, fine-tunes CodeT5 [Wang et al. 2021], a pretrained LLM for code. Although
these models have shown great advances [Le et al. 2020], challenges remain in ensuring type correct-
ness and predicting rare types not represented in training sets. Validation can filter invalid types out
but cannot correct them, leading to potential drops in coverage. Moreover, LLM-based techniques
demand substantial computational and energy resources [Chien et al. 2023; Sakota et al. 2024; Samsi
et al. 2023], and despite extensive pre-training datasets, they struggle with out-of-distribution
generalization and unpredictable inference behaviors [Hajipour et al. 2024].

Besides Python, there is plenty of work on machine learning-based type inference for other
dynamically typed programming languages, notably JavaScript and TypeScript. DeepTyper [Hel-
lendoorn et al. 2018] is also adapted to work on JavaScript, while NL2Type [Malik et al. 2019] is
another system leveraging natural language hints to predict JavaScript types that improves on
DeepTyper. LambdaNet [Wei et al. 2020] is a graph neural network that performs probabilistic
type inference for JavaScript programs, and TypeBert [Jesse et al. 2021] is a model based on the
BERT [Devlin et al. 2018] architecture model that achieves better performance than more sophisti-
cated models. Building on top of TypeBert, DiverseTyper [Jesse et al. 2022] explicitly focuses on
predicting user-defined types for TypeScript by leveraging TypeBert as a pre-trained model and
using deep similarity learning to align new type declarations to uses of those declarations.

Compared with machine learning-based type inference methods, QuAC does not require a
training set or training stage and works directly on the data in the Python codebase it runs on.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 343. Publication date: October 2024.

QuAC: Quick Attribute-Centric Type Inference for Python 343:27

When attributes are abundant, QuAC can make more accurate predictions than machine learning
models. It can also attain a higher coverage than letting a machine learning model predict types with
no guarantee of correctness and filtering out those deemed invalid. In addition, QuAC dynamically
constructs a type query database for each project where each type is treated equally, thus not
suffering from the rare types problem. Furthermore, as machine learning models tend to be large,
QuAC’s lightweight design is also more efficient when running on large codebases.

However, the ability of machine learning-based type inference methods to leverage natural
language cues and recommend types would be beneficial in situations where attributes are scarce and
QuAC does not make accurate type predictions, one of QuAC’s main failure modes in Section 6.4.7.
Furthermore, QuAC’s correct type predictions complement those made by Stray and HiTyper in
Section 6.4.6, and QuAC is much more efficient and significantly more consistent at predicting
container type parameters and non-builtin types than TypeT5 in Section 6.4.9. Thus, including
QuAC in an ensemble with machine learning methods or as part of a hybrid LLM-Symbolic method
to leverage each other’s advantages would be a feasible direction for future work.

9 Conclusion

We propose QuAC (Quick Attribute-Centric Type Inference), a novel type inference approach for
Python inspired by Python’s duck typing. By collecting attribute sets for Python expressions, em-
ploying information retrieval techniques, and modeling container type parameter semantics, QuUAC
strikes a balance between correctness and coverage and achieves exceptional run-time performance,
as demonstrated by our experimental results on popular untyped Python projects. Moreover, QuAC
also excels in predicting container type parameters and non-builtin types, demonstrating great
potential in synergistically complementing existing type inference methods. Finally, on average,
QuAC is 92X faster than an LLM-based baseline while covering 47.8% of its errorless non-trivial
type predictions and being significantly more consistent in predicting container type parameters
and non-builtin types. This suggests QUAC could be used to soften the cost and generalization
challenges of LLM-based methods.

Data-Availability Statement

The code, benchmarks, and data replication scripts supporting Sections 5 and 6 are available on
Zenodo [Wu and Lemieux 2024].

Acknowledgments

We thank the anonymous reviewers for their feedback which greatly helped improve the paper, and
the anonymous artifact reviewers who helped improve the artifact. This research is supported by a
Google Research Scholar Award in Software Engineering and Programming Languages (2023). This
material is based upon work supported by the Defense Advanced Research Projects Agency (DARPA)
and Naval Information Warfare Center Pacific NIWC Pacific) under Contract No. NN66001-22-C-
4027. Any opinions, findings and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of DARPA or NIWC Pacific.

References

Miltiadis Allamanis, Earl T Barr, Soline Ducousso, and Zheng Gao. 2020. Typilus: Neural type hints. In Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design and Implementation. https://doi.org/10.1145/3385412.3385997

Murugan Anandarajan, Chelsey Hill, Thomas Nolan, Murugan Anandarajan, Chelsey Hill, and Thomas Nolan. 2019. Term-
document representation. Practical Text Analytics: Maximizing the Value of Text Data (2019). https://doi.org/10.1007/978-
3-319-95663-3_5

Christopher Anderson, Paola Giannini, and Sophia Drossopoulou. 2005. Towards type inference for JavaScript. In ECOOP-
Object-Oriented Programming: 19th European Conference. https://doi.org/10.1007/11531142_19

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 343. Publication date: October 2024.

https://doi.org/10.1145/3385412.3385997
https://doi.org/10.1007/978-3-319-95663-3_5
https://doi.org/10.1007/978-3-319-95663-3_5
https://doi.org/10.1007/11531142_19

343:28 Jifeng Wu, Caroline Lemieux

John Peter Campora, Sheng Chen, Martin Erwig, and Eric Walkingshaw. 2017. Migrating gradual types. Proceedings of the
ACM on Programming Languages, Volume 2, Issue POPL (2017). https://doi.org/10.1145/3158103

Brett Cannon. 2005. Localized type inference of atomic types in Python. California Polytechnic State University.

Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G Siek. 2019. Gradual typing: a new perspective.
Proceedings of the ACM on Programming Languages, Volume 3, Issue POPL (2019). https://doi.org/10.1145/3290329

Satish Chandra, Colin S Gordon, Jean-Baptiste Jeannin, Cole Schlesinger, Manu Sridharan, Frank Tip, and Youngil Choi. 2016.
Type inference for static compilation of JavaScript. In Proceedings of the 2016 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications. https://doi.org/10.1145/2983990.2984017

Andrew A Chien, Liuzixuan Lin, Hai Nguyen, Varsha Rao, Tristan Sharma, and Rajini Wijayawardana. 2023. Reducing
the Carbon Impact of Generative Al Inference (today and in 2035). In Proceedings of the 2nd Workshop on Sustainable
Computer Systems. https://doi.org/10.1145/3604930.3605705

Santanu Kumar Dash, Miltiadis Allamanis, and Earl T Barr. 2018. Refinym: Using names to refine types. In Proceedings of
the 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering. https://doi.org/10.1145/3236024.3236042

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018). https://doi.org/10.48550/arXiv.1810.
04805

Gregory Ewing. 2009. PEP 380 — Syntax for Delegating to a Subgenerator. https://peps.python.org/pep-0380/. Access Date:
March 20, 2024.

Gregory Ewing and Guido van Rossum. 2005. PEP 342 — Coroutines via Enhanced Generators. https://peps.python.org/pep-
0342/. Access Date: March 20, 2024.

Michael Furr, Jong-hoon An, Jeffrey S Foster, and Michael Hicks. 2009. Static type inference for Ruby. In Proceedings of the
2009 ACM Symposium on Applied Computing. https://doi.org/10.1145/1529282.1529700

Zheng Gao, Christian Bird, and Earl T Barr. 2017. To type or not to type: quantifying detectable bugs in JavaScript. In
Proceedings of the 39th International Conference on Software Engineering. https://doi.org/10.1109/ICSE.2017.75

Ronald Garcia and Matteo Cimini. 2015. Principal type schemes for gradual programs. In Proceedings of the 42nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. https://doi.org/10.1145/2676726.2676992

GitHub. 2023. Octoverse 2023 — The state of open source. https://octoverse.github.com/. Access Date: March 20, 2024.

Google. 2024. Pytype. https://github.com/google/pytype. GitHub repository.

Yimeng Guo, Zhifei Chen, Lin Chen, Wenjie Xu, Yanhui Li, Yuming Zhou, and Baowen Xu. 2024. Generating Python type
annotations from type inference: how far are we? ACM Transactions on Software Engineering and Methodology (2024).
https://doi.org/10.1145/3652153

Hossein Hajipour, Ning Yu, Cristian-Alexandru Staicu, and Mario Fritz. 2024. SimSCOOD: Systematic Analysis of Out-
of-Distribution Generalization in Fine-tuned Source Code Models. In Findings of the Association for Computational
Linguistics: NAACL. https://doi.org/10.18653/v1/2024.findings-naacl.90

Mostafa Hassan, Caterina Urban, Marco Eilers, and Peter Miiller. 2018. MaxSMT-based type inference for Python 3. In
Computer Aided Verification: 30th International Conference. https://doi.org/10.1007/978-3-319-96142-2_2

Vincent] Hellendoorn, Christian Bird, Earl T Barr, and Miltiadis Allamanis. 2018. Deep learning type inference. In Proceedings
of the 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering. https://doi.org/10.1145/3236024.3236051

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt. 2019. CodeSearchNet challenge:
Evaluating the state of semantic code search. arXiv preprint arXiv:1909.09436 (2019).

IEEE Spectrum. 2023. The Top Programming Languages 2023. https://spectrum.ieee.org/top-programming-languages.
Access Date: March 20, 2024.

Simon Holm Jensen, Anders Mgller, and Peter Thiemann. 2009. Type analysis for JavaScript. In Proceedings of the 16th
International Symposium on Static Analysis. https://doi.org/10.1007/978-3-642-03237-0_17

Kevin Jesse, Premkumar T Devanbu, and Toufique Ahmed. 2021. Learning type annotation: Is big data enough?. In Proceedings
of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering. https://doi.org/10.1145/3468264.3473135

Kevin Jesse, Premkumar T Devanbu, and Anand Sawant. 2022. Learning to predict user-defined types. IEEE Transactions on
Software Engineering (2022). https://doi.org/10.1109/TSE.2022.3178945

Milod Kazerounian, Brianna M Ren, and Jeffrey S Foster. 2020. Sound, heuristic type annotation inference for Ruby. In
Proceedings of the 16th ACM SIGPLAN International Symposium on Dynamic Languages. https://doi.org/10.1145/3426422.
3426985

Triet HM Le, Hao Chen, and Muhammad Ali Babar. 2020. Deep learning for source code modeling and generation: Models,
applications, and challenges. ACM Computing Surveys (CSUR) (2020). https://doi.org/10.1145/3383458

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 343. Publication date: October 2024.

https://doi.org/10.1145/3158103
https://doi.org/10.1145/3290329
https://doi.org/10.1145/2983990.2984017
https://doi.org/10.1145/3604930.3605705
https://doi.org/10.1145/3236024.3236042
https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.48550/arXiv.1810.04805
https://peps.python.org/pep-0380/
https://peps.python.org/pep-0342/
https://peps.python.org/pep-0342/
https://doi.org/10.1145/1529282.1529700
https://doi.org/10.1109/ICSE.2017.75
https://doi.org/10.1145/2676726.2676992
https://octoverse.github.com/
https://github.com/google/pytype
https://doi.org/10.1145/3652153
https://doi.org/10.18653/v1/2024.findings-naacl.90
https://doi.org/10.1007/978-3-319-96142-2_2
https://doi.org/10.1145/3236024.3236051
https://spectrum.ieee.org/top-programming-languages
https://doi.org/10.1007/978-3-642-03237-0_17
https://doi.org/10.1145/3468264.3473135
https://doi.org/10.1109/TSE.2022.3178945
https://doi.org/10.1145/3426422.3426985
https://doi.org/10.1145/3426422.3426985
https://doi.org/10.1145/3383458

QuAC: Quick Attribute-Centric Type Inference for Python 343:29

Libraries.io. 2023. Search Results for PyPI Packages Ordered by Rank. https://libraries.io/search?order=desc&platforms=
PyPI&sort=rank. Access Date: July 31, 2023.

Eva Maia, Nelma Moreira, and Rogério Reis. 2012. A static type inference for Python. Proc. of DYLA (2012).

Rabee Sohail Malik, Jibesh Patra, and Michael Pradel. 2019. NL2Type: inferring JavaScript function types from natural
language information. In Proceedings of the 41th International Conference on Software Engineering. https://doi.org/10.
1109/ICSE.2019.00045

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schiitze. 2008. Introduction to Information Retrieval. Cambridge
University Press. https://doi.org/10.1017/CB09780511809071

Meta. 2024. Pyre. https://github.com/facebook/pyre-check. GitHub repository.

Microsoft. 2024. Pyright. https://github.com/microsoft/pyright. GitHub repository.

Zeina Migeed and Jens Palsberg. 2019. What is decidable about gradual types? Proceedings of the ACM on Programming
Languages, Volume 4, Issue POPL (2019). https://doi.org/10.1145/3371097

Nevena Milojkovic, Mohammad Ghafari, and Oscar Nierstrasz. 2017. It’s duck (typing) season!. In IEEE/ACM 25th International
Conference on Program Comprehension (ICPC). https://doi.org/10.1109/ICPC.2017.10

Amir M Mir, Evaldas Latogkinas, and Georgios Gousios. 2021. ManyTypes4Py: A benchmark Python dataset for machine
learning-based type inference. In IEEE/ACM 18th International Conference on Mining Software Repositories (MSR). https:
//doi.org/10.1109/MSR52588.2021.00079

Amir M Mir, Evaldas Latoskinas, Sebastian Proksch, and Georgios Gousios. 2022. Type4Py: Practical deep similarity
learning-based type inference for Python. In Proceedings of the 44th International Conference on Software Engineering.
https://doi.org/10.1145/3510003.3510124

Yusuke Miyazaki, Taro Sekiyama, and Atsushi Igarashi. 2019. Dynamic type inference for gradual Hindley—Milner typing.
Proceedings of the ACM on Programming Languages, Volume 3, Issue POPL (2019). https://doi.org/10.1145/3290331

mypy Developers. 2024. mypy - Optional Static Typing for Python. https://mypy-lang.org/. Access Date: March 20, 2024.

mypy Developers. 2024. Type Narrowing - MyPy Documentation. https://mypy.readthedocs.io/en/stable/type_narrowing.
html. Access Date: March 20, 2024.

Yun Peng, Cuiyun Gao, Zongjie Li, Bowei Gao, David Lo, Qirun Zhang, and Michael Lyu. 2022. Static inference meets deep
learning: a hybrid type inference approach for Python. In Proceedings of the 44th International Conference on Software
Engineering. https://doi.org/10.1145/3510003.3510038

Luna Phipps-Costin, Carolyn Jane Anderson, Michael Greenberg, and Arjun Guha. 2021. Solver-based gradual type migration.
Proceedings of the ACM on Programming Languages, Volume 5, Issue OOPSLA (2021). https://doi.org/10.1145/3485488

Michael Pradel, Georgios Gousios, Jason Liu, and Satish Chandra. 2020. Typewriter: Neural type prediction with search-based
validation. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. https://doi.org/10.1145/3368089.3409715

Python Software Foundation. 2020. The Python Language Reference, Version 3.9. https://docs.python.org/3.9/reference/.
Access Date: March 20, 2024.

Python Core Developers. 2024. pyperformance: Python Performance Benchmark Suite. https://github.com/python/
pyperformance. Access Date: March 20, 2024.

Python Software Foundation. 2020. Abstract Syntax Trees - Python 3.9 Documentation. https://docs.python.org/3.9/library/
ast.html. Access Date: March 20, 2024.

Ingkarat Rak-amnouykit, Daniel McCrevan, Ana Milanova, Martin Hirzel, and Julian Dolby. 2020. Python 3 types in the wild:
a tale of two type systems. In Proceedings of the 16th ACM SIGPLAN International Symposium on Dynamic Languages.
https://doi.org/10.1145/3426422.3426981

Aseem Rastogi, Avik Chaudhuri, and Basil Hosmer. 2012. The ins and outs of gradual type inference. In Proceedings of
the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. https://doi.org/10.1145/
2103656.2103714

Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan Vitek. 2010. An analysis of the dynamic behavior of JavaScript
programs. In Proceedings of the 31st ACM SIGPLAN Conference on Programming Language Design and Implementation.
https://doi.org/10.1145/1806596.1806598

Stephen Robertson. 2004. Understanding inverse document frequency: on theoretical arguments for IDF. Journal of
Documentation (2004). https://doi.org/10.1108/00220410410560582

Stephen Robertson, Hugo Zaragoza, et al. 2009. The probabilistic relevance framework: BM25 and beyond. Foundations and
Trends® in Information Retrieval (2009). https://doi.org/10.1561/1500000019

Marija Sakota, Maxime Peyrard, and Robert West. 2024. Fly-swat or cannon? cost-effective language model choice via
meta-modeling. In Proceedings of the 17th ACM International Conference on Web Search and Data Mining. https:
//doi.org/10.1145/3616855.3635825

Michael Salib. 2004. Starkiller: A static type inferencer and compiler for Python. Ph. D. Dissertation. Massachusetts Institute
of Technology.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 343. Publication date: October 2024.

https://libraries.io/search?order=desc&platforms=PyPI&sort=rank
https://libraries.io/search?order=desc&platforms=PyPI&sort=rank
https://doi.org/10.1109/ICSE.2019.00045
https://doi.org/10.1109/ICSE.2019.00045
https://doi.org/10.1017/CBO9780511809071
https://github.com/facebook/pyre-check
https://github.com/microsoft/pyright
https://doi.org/10.1145/3371097
https://doi.org/10.1109/ICPC.2017.10
https://doi.org/10.1109/MSR52588.2021.00079
https://doi.org/10.1109/MSR52588.2021.00079
https://doi.org/10.1145/3510003.3510124
https://doi.org/10.1145/3290331
https://mypy-lang.org/
https://mypy.readthedocs.io/en/stable/type_narrowing.html
https://mypy.readthedocs.io/en/stable/type_narrowing.html
https://doi.org/10.1145/3510003.3510038
https://doi.org/10.1145/3485488
https://doi.org/10.1145/3368089.3409715
https://docs.python.org/3.9/reference/
https://github.com/python/pyperformance
https://github.com/python/pyperformance
https://docs.python.org/3.9/library/ast.html
https://docs.python.org/3.9/library/ast.html
https://doi.org/10.1145/3426422.3426981
https://doi.org/10.1145/2103656.2103714
https://doi.org/10.1145/2103656.2103714
https://doi.org/10.1145/1806596.1806598
https://doi.org/10.1108/00220410410560582
https://doi.org/10.1561/1500000019
https://doi.org/10.1145/3616855.3635825
https://doi.org/10.1145/3616855.3635825

343:30 Jifeng Wu, Caroline Lemieux

Siddharth Samsi, Dan Zhao, Joseph McDonald, Baolin Li, Adam Michaleas, Michael Jones, William Bergeron, Jeremy Kepner,
Devesh Tiwari, and Vijay Gadepally. 2023. From words to watts: Benchmarking the energy costs of large language model
inference. In IEEE High Performance Extreme Computing Conference (HPEC). https://doi.org/10.1109/HPEC58863.2023.
10363447

Yury Selivanov. 2015. PEP 492 — Coroutines with async and await syntax. https://peps.python.org/pep-0492. Access Date:
March 20, 2024.

Jeremy G Siek and Manish Vachharajani. 2008. Gradual typing with unification-based inference. In Proceedings of the
Symposium on Dynamic Languages. https://doi.org/10.1145/1408681.1408688

Ke Sun, Yifan Zhao, Dan Hao, and Lu Zhang. 2022. Static Type Recommendation for Python. In Proceedings of the 37th
International Conference on Automated Software Engineering. https://doi.org/10.1145/3551349.3561150

The Computer Language Benchmarks Game Team. 2023. The Computer Language Benchmarks Game. https://
benchmarksgame-team.pages.debian.net/benchmarksgame/index.html. Access Date: March 20, 2024.

Typeshed Contributors. 2024. Typeshed: Stubs for Python standard library and third-party libraries. https://github.com/
python/typeshed. Access Date: March 20, 2024.

Guido van Rossum, Jukka Lehtosalo, and Lukasz Langa. 2014. PEP 484 — Type Hints. https://peps.python.org/pep-0484/.
Access Date: March 20, 2024.

Guido van Rossum, Ivan Levkivskyi, Jukka Lehtosalo, Lukasz Langa, and Michael Lee. 2018. PEP 544 - Protocols: Structural
subtyping (static duck typing). https://peps.python.org/pep-0544/. Access Date: March 26, 2024.

Michael M Vitousek, Andrew M Kent, Jeremy G Siek, and Jim Baker. 2014. Design and evaluation of gradual typing for
Python. In Proceedings of the 10th ACM Symposium on Dynamic Languages. https://doi.org/10.1145/2661088.2661101

Yin Wang. 2022. PySonar2. https://github.com/yinwang0/pysonar2. GitHub repository.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. 2021. CodeT5: Identifier-aware unified pre-trained encoder-decoder
models for code understanding and generation. arXiv preprint arXiv:2109.00859 (2021). https://doi.org/10.48550/arXiv.
2109.00859

Jiayi Wei, Greg Durrett, and Isil Dillig. 2023. TypeT5: Seq2seq type inference using static analysis. arXiv preprint
arXiv:2303.09564 (2023). https://doi.org/10.48550/arXiv.2303.09564

Jiayi Wei, Maruth Goyal, Greg Durrett, and Isil Dillig. 2020. LambdaNet: Probabilistic type inference using graph neural
networks. arXiv preprint arXiv:2005.02161 (2020). https://doi.org/10.48550/arXiv.2005.02161

Jifeng Wu and Caroline Lemieux. 2024. QuAC: Quick Attribute-Centric Type Inference for Python. https://doi.org/10.5281/
zenodo.13367665

Zhaogui Xu, Xiangyu Zhang, Lin Chen, Kexin Pei, and Baowen Xu. 2016. Python probabilistic type inference with natural
language support. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on the Foundations of Software
Engineering. https://doi.org/10.1145/2950290.2950343

Yanyan Yan, Yang Feng, Hongcheng Fan, and Baowen Xu. 2023. DLInfer: Deep Learning with Static Slicing for Python Type
Inference. In Proceedings of the 45th International Conference on Software Engineering. https://doi.org/10.1109/ICSE48619.
2023.00170

Ming-Ho Yee and Arjun Guha. 2023. Do Machine Learning Models Produce TypeScript Types that Type Check? arXiv
preprint arXiv:2302.12163 (2023). https://doi.org/10.48550/arXiv.2302.12163

Jelle Zijlstra. 2024. typeshed_client: Retrieve information from typeshed and other typing stubs. https://github.com/
JelleZijlstra/typeshed_client. Access Date: March 20, 2024.

Received 2024-04-05; accepted 2024-08-18

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 343. Publication date: October 2024.

https://doi.org/10.1109/HPEC58863.2023.10363447
https://doi.org/10.1109/HPEC58863.2023.10363447
https://peps.python.org/pep-0492
https://doi.org/10.1145/1408681.1408688
https://doi.org/10.1145/3551349.3561150
https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
https://github.com/python/typeshed
https://github.com/python/typeshed
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0544/
https://doi.org/10.1145/2661088.2661101
https://github.com/yinwang0/pysonar2
https://doi.org/10.48550/arXiv.2109.00859
https://doi.org/10.48550/arXiv.2109.00859
https://doi.org/10.48550/arXiv.2303.09564
https://doi.org/10.48550/arXiv.2005.02161
https://doi.org/10.5281/zenodo.13367665
https://doi.org/10.5281/zenodo.13367665
https://doi.org/10.1145/2950290.2950343
https://doi.org/10.1109/ICSE48619.2023.00170
https://doi.org/10.1109/ICSE48619.2023.00170
https://doi.org/10.48550/arXiv.2302.12163
https://github.com/JelleZijlstra/typeshed_client
https://github.com/JelleZijlstra/typeshed_client

	Abstract
	1 Introduction
	2 High-Level Overview
	3 Background
	3.1 Python Type Annotations
	3.2 Special Methods
	3.3 Typeshed

	4 Method
	4.1 Overview
	4.2 Predicting Classes
	4.3 Predicting Type Parameters for Containers

	5 Implementation
	6 Evaluation
	6.1 Research Questions
	6.2 Baselines and Benchmarks
	6.3 Evaluation Criteria
	6.4 Results

	7 Discussion
	7.1 Future Research Directions
	7.2 Threats to Validity

	8 Related Work
	8.1 Static Type Inference Methods for Dynamic Languages
	8.2 Machine Learning-based Type Inference Methods for Dynamic Languages

	9 Conclusion
	Acknowledgments
	References

