
1

Effective Stack Wear Leveling for NVM
Jifeng Wu, Wei Li, Libing Wu, Mengting Yuan, Chun Jason Xue, Jingling Xue, Qingan Li

Abstract—With the rapid growth of data processed by com-
puter systems, Non-Volatile Memory (NVM), represented by
Phase Change Memory (PCM), is regarded as a promising next-
generation storage technology as it offers superior advantages
over DRAM. However, PCM suffers from a severe write dura-
bility problem, leading to an extremely short lifespan under the
uneven write patterns of real-world programs. We observe that
loops are one of the primary causes of uneven writes on the
stack. To alleviate this problem, we present Loop2Recursion, a
compiler-assisted stack wear leveling technique that automati-
cally transforms loops into recursive functions. In addition, we
propose several optimizations to reduce the stack sizes and in-
struction counts of the generated recursive functions, two schemes
to limit recursion depth, and selective loop transformation for
cache-enabled architectures. Experimental results demonstrate
that Loop2Recursion outperforms state-of-the-art methods by
significantly improving stack wear leveling with a greatly reduced
performance overhead.

Index Terms—Non-Volatile Memory, Wear Leveling, Compiler,
Loop, Recursion.

I. INTRODUCTION

In the era of Big Data and AI, with the amount of data pro-
cessed by computer systems increasing exponentially, existing
DRAM-based main memory systems struggle to cope with the
ever-growing demands for performance, energy efficiency [1],
and scalability, especially for data-intensive, memory-heavy
applications such as Deep Neural Networks [2]. Emerging
Non-Volatile Memory (NVM) technologies, such as Phase
Change Memory (PCM), feature byte addressability, high
density, low power, storage-like persistence, and DRAM-
compatible performance [3], making them a competitive can-
didate for the next generation of main memory.

However, as a relatively young technology, PCM suffers
from various problems, of which limited write endurance is
particularly salient. For example, each PCM cell can only
withstand 107−109 writes, eight orders of magnitude smaller
than DRAM [4]. Moreover, given that the writes of real-world
programs tend to be concentrated in limited areas, causing

This work was supported in part by the Key R&D Plan of Hubei Province
(No. 2020BAA021, No. 2021BAA025), the Industry-University-Research
Innovation Fund for Chinese Universities (No. 2021FNA04004), LIESMARS
Special Research Funding, State Key Laboratory of Computer Architecture
(ICT, CAS) under Grant No. CARCH A202112, the National Key Research
and Development Program of China (No. 2022YFB4400704), and ARC Grant
DP210102409.

Jifeng Wu, Libing Wu, Mengting Yuan, Qingan Li are with the
School of Computer Science, Wuhan University, Wuhan, China. E-
mail: jifengwu2k@gmail.com, wu@whu.edu.cn, ymt@whu.edu.cn, qin-
gan@whu.edu.cn. (Corresponding author: Qingan Li)

Wei Li and Jingling Xue are with the School of Computer Science and
Engineering, University of New South Wales, Sydney, Australia. E-mail:
liwei@cse.unsw.edu.au, jingling@cse.unsw.edu.au

Chun Jason Xue is with the Department of Computer Science, City
University of Hong Kong, Hong Kong. E-mail: jasonxue@cityu.edu.hk

intensive writes to wear out a small proportion of PCM cells
prematurely, the lifespan of PCM may be just months [5].

To address this issue, researchers have proposed various
wear leveling techniques that spread writes uniformly over the
entire address space at multiple levels, including the hardware
level [6]–[12], the Operating System (OS) level [5], [13]–
[17], and the program level. However, most hardware- and
OS-level techniques neglect the uneven distribution of writes
inside pages and require extra hardware to track page wear.
In contrast, program-level methods aim at achieving wear
balance by optimizing data allocation and access patterns
of programs at compile- or run-time [18]–[21]. Compared
with hardware- and OS-level schemes, they provide a more
economical and flexible wear leveling solution, as they do
not require specialized hardware and OS support. They are
especially suitable for embedded systems without a Memory
Management Unit (MMU) and caches, where hardware- and
OS-level wear leveling techniques will become substantially
more inefficient and impractical.

Existing program-level wear leveling solutions mainly ad-
dress wear leveling for the heap [18], [19], [22] and stack
memory segments of a program. As for the stack, Li et
al. [20], [23] put forward a compiler-assisted dynamic stack
that dynamically allocates stack frames in the manner of
allocating heap objects. Although such a strategy spreads stack
frames more evenly in memory, it overlooks unbalanced writes
within stack frames. Many writes will converge to a few fixed
locations when some variables are frequently updated within a
stack frame. In addition, dynamically allocating stack frames
comes with a significant performance overhead.

To address these two issues, we focus on optimizing loops
to achieve improved stack wear leveling. This is based on the
observations that loops usually introduce frequently updated
hot variables, leading to uneven wear within stack frames,
and that function calls within loops lead to a large number of
stack frames being allocated on the same memory locations,
which leads to an unbalanced distribution of stack frames.
We propose Loop2Recursion, a compile-time wear leveling
scheme that eliminates hot variables inside stack frames
and mitigates the imbalance of stack frame distribution by
automatically transforming loops into recursions. We have
designed Loop2Recursion based on the intermediate represen-
tation (IR) of a popular compiler infrastructure (Low Level
Virtual Machine, LLVM). This makes it applicable to a wide
range of programming languages this infrastructure supports.
In addition, as LLVM IR is hardware- and OS- independent,
and Loop2Recursion can achieve wear leverling at a fine-
granularity level, i.e., variable level, Loop2Recursion can be
used together with other hardware- or OS-level wear leveling
schemes for enhanced wear leveling. Since transforming loops
into recursions may significantly increase stack memory usage,

2

even leading to stack overflow, and incur a performance cost,
we propose several optimizations to reduce the stack sizes
and instruction counts of the generated recursive functions. In
addition, we propose flexibly limiting the recursion depth to
deal with deep recursions. Furthermore, we propose selective
loop transformation for cache-enabled architectures, where we
preserve loops not causing uneven stack writes.

Using programs from MiBench [24], we compare Loop2-
Recursion with the state-of-the-art dynamic stack [20], [23],
and comprehensively evaluate our stack size and instruction
count optimizations, our two schemes to limit recursion depth,
and Loop2Recursion on cache-enabled architecture. Experi-
mental results demonstrate that Loop2Recursion outperforms
the dynamic stack, as it exhibits better wear leveling ef-
fectiveness while incurring significantly lower overhead. In
addition, our optimizations effectively reduce the stack sizes
and instruction counts of the generated recursive functions, and
limiting recursion depth by iteratively invoking a depth-limited
recursive function works better to help achieve a satisfactory
trade-off between wear leveling effectiveness and memory
overhead. Furthermore, with selective loop transformation,
Loop2Recursion can also work well on a cache-enabled archi-
tecture with only a minor reduction in cache hits. In summary,
the significant contributions of this paper are:

• An empirical study showing that loops in programs
significantly contribute to highly unbalanced stack writes.

• The design of Loop2Recursion, an approach to achieve
stack wear leveling by automatically transforming loops
into recursions.

• Optimizations to reduce the space and performance over-
head of the recursive functions generated by Loop2-
Recursion.

• Two schemes are proposed to limit recursion depth and
to provide a flexible trade-off between wear leveling
effectiveness and memory overhead.

• Selective loop transformation to preserve loops not caus-
ing uneven writes for cache-enabled architectures.

• A comprehensive experimental evaluation on the effec-
tiveness and performance of Loop2Recursion, optimiza-
tions, two schemes to limit recursion depth, and Loop2-
Recursion on cache-enabled architecture.

The rest of the paper is organized as follows. Section II
reviews related work and Section III introduces the motiva-
tion of the Loop2recursion method. Section IV presents the
Loop2Recursion method and our optimizations. We propose
two schemes to limit recursion depth in Section V, and selec-
tive loop transformation in Section VI. Section VII conducts
an extensive experimental evaluation of the methods above.
Finally, Section VIII concludes the work.

II. RELATED WORK

To address the write endurance issue of NVM, researchers
have proposed various techniques at the hardware, OS, and
program levels. These techniques can be divided into write
reduction techniques that reduce the number of writes to NVM
storage cells and wear leveling techniques that spread writes
more uniformly.

A. Hardware-level Techniques

1) Hardware-level Write Reduction Techniques: To reduce
the number of writes to NVM storage cells at the hardware
level, we can utilize a hybrid main memory architecture
consisting of both DRAM and NVM, where most writes are
allocated to DRAM instead of NVM [6], [25], [26]. In a pure
NVM main memory architecture, writes to NVM storage cells
can be reduced by reducing writes at the bit level [7], [27]–
[29], or compressing the data to be written [28], [29].

2) Hardware-level Wear Leveling Techniques: At the hard-
ware level, wear leveling can be achieved by shifting or
swapping data between physical locations at different gran-
ularities, such as pages [8], blocks [7], and lines [6], [9].
Generally, finer granularities enable more precise wear leveling
but at the cost of more significant performance and memory
overhead. In addition, [10] also proposes maintaining a table
mapping frequently updated hot data to NVM storage cells
with few writes to achieve wear leveling, whose performance
and memory overhead are further improved in [11], [12].

B. OS- and Program-level Techniques

1) OS- and Program-level Write Reduction Techniques: As
hardware-level techniques usually require additional, special-
ized hardware, many researchers have also proposed OS- and
program-level write reduction techniques.

In a DRAM-NVM hybrid main memory architecture, it
is possible to allocate frequently written data to DRAM
using compile-time data allocation [30]–[33] or runtime page
scheduling [34]. As for a pure NVM main memory architec-
ture, [35] proposes a compile-time write reduction approach
based on recalculation. The basic idea is to compare the cost
of writing data to NVM and accessing it later with the cost of
recalculating the data when needed. A write is avoided when
recalculation is more economical.

2) OS- and Program-level Wear Leveling Techniques: At
the OS level, wear leveling is usually accomplished through
custom page scheduling algorithms, which involve keeping
track of pages with write count [13]–[17], or predicting
the wear of pages [5]. Similar page scheduling and page
replacement algorithms have also been proposed for DRAM-
NVM hybrid main memory architectures [36], [37].

In contrast, program-level techniques modify memory al-
location and access patterns to distribute writes more evenly.
For the heap memory segment of a program, wear-aware heap
allocators [18], [19], [22] can prevent most heap objects from
being allocated to the same addresses. As for wear leveling for
the stack, inspired by the effectiveness of the heap allocators
mentioned above, a compiler-assisted dynamic stack [20], [23],
which allocates stack frames in the manner of allocating heap
objects, has been proposed. Although this approach spreads
stack frames more evenly, it neglects uneven writes within
them and suffers from significant performance overhead. These
two issues are addressed in Loop2Recursion.

C. Transforming loops to recursion

The theoretical relation between iteration and recursion has
been studied for decades from different perspectives [38], [39].

3

In general, compilers prefer iteration over recursion for perfor-
mance, and there are lots of work on transforming recursive
functions into loops. In contrast, transformations from loops
to recursive functions are rare. [40] proposes an algorithm
to transform iterative loops into tail-recursive functions for
Java automatically. However, this algorithm doesn’t work well
in our work. First, this algorithm is tailored to the Java
language. It can only handle well-defined loops in Java and
cannot handle more general loops, like those implemented
using the goto statement. Second, to handle premature exits
from a loop (due to a break, continue, return, or throw
statement), the generated recursive functions commonly return
lots of information containing the specific statement executed
in the recursive function, and parameters associated with that
statement. Such an approach may incur significant overhead.
In this work, we design Loop2Recursion to overcome these
limitations and build a more general tool for transforming
loops into recursions.

III. MOTIVATION

In the stack segment of a program’s memory space, memory
is allocated in the form of stack frames storing functions’
return addresses, arguments, local variables, etc., by adjusting
the stack pointer register. Each stack frame corresponds to
a function instance that has yet to terminate with a return.
Whenever a function is invoked or returned, its frame is
allocated or deallocated. The allocation and deallocation of
stack frames happen on contiguous memory blocks in a Last-
In-First-Out (LIFO) order. Such a mechanism leads to some
memory areas associated with a relatively large number of
stack frames while other areas are rarely used, leading to
uneven writes. This is especially the case for function calls
within loops, as shown in Listing 1, where the stack frames
of calls to dijkstra are all allocated on the same location.

Listing 1. An Example of Function Calls Within Loops
#define NUM_NODES 100

int dijkstra(int chStart, int chEnd);

int main(int argc, char* argv[]) {
// ...
int i, j;
for (i=0, j=NUM_NODES/2; i<NUM_NODES; ++i,++j) {

j %= NUM_NODES;
dijkstra(i, j);

}
// ...

}

To overcome such a problem, Li et al. [20] proposed a
compiler-assisted dynamic stack that allocates stack frames
dynamically in a way analogous to heap allocation. Specifi-
cally, every time a function is called, an allocator based on
the next-fit policy is immediately employed to obtain a free
memory area for its frame. Li et al. [23] further improved such
an approach by using a new wear-aware memory allocator with
better support for wear leveling.

Although such an approach enables stack frames to be
more uniformly distributed, mitigating the problem of uneven
writes, some shortcomings still exist. On the one hand, the

performance overhead of dynamically allocating and deallo-
cating stack frames is much more significant than that of the
traditional FIFO stack allocator. On the other hand, such an
approach regards each stack frame as a whole and overlooks
the imbalance of writes within a stack frame.

In fact, wear inside stack frames is far from equilib-
rium since frequently-updated variables may produce intensive
writes on their memory locations. For example, the loop in
Listing 1 has a total of 100 iterations, and its loop variables
i and j are anticipated to be updated 101 and 201 times,
respectively. Under such circumstances, each update to these
hot variables may cause a write to memory on a cacheless
architecture, typically for embedded systems. Even when
write-back caches are used, these writes may not be entirely
avoided as cache conflicts will frequently occur in the worst-
case scenario. As a result, the number of writes on their
memory locations is much higher than other locations inside
the stack frame. Figure 1, which compares the maximum
number of writes on a memory address in stack frames
under no wear leveling, the dynamic stack, and our proposed
Loop2Recursion, indicates that most programs suffer from
uneven wear inside stack frames, with tens of thousands of
writes concentrated on a few memory locations.

basicmath bf bitcnts dijkstra fft patricia pbmsrch rawcaudio susan
101

102

103

104

105 No WL
Dynamic Stack
Loop2Recursion

Fig. 1. Maximum Number of Writes on a Memory Address in Stack Frames

Based on the discussion above, loops are one of the primary
causes of uneven wear on the stack, and it is feasible to miti-
gate this issue by transforming loops into recursive functions.

For example, Listing 2 is a recursive version of the example
of function calls within loops in Listing 1. The original loop
within main is replaced with a recursive function, main$0, in
which the original frequently-updated loop variables become
its parameters, and the original loop conditions are used as its
recursive conditions.

Listing 2. A Recursive Version of Listing 1
#define NUM_NODES 100

int dijkstra(int chStart, int chEnd);

void main$0(int i, int j) {
if (i < NUM_NODES) {
j %= NUM_NODES;
dijkstra(i, j);
main$0(i + 1, j + 1);

}
}

int main(int argc, char* argv[]) {
// ...
main$0(0, NUM_NODES / 2);
// ...

}

4

In Listing 2, each time main$0 is called, its stack frame
is allocated on the top of the stack, and the stack frames of
dijkstra, which were originally collocated, are allocated
on different memory locations, enabling a uniform stack
frame distribution. Furthermore, local variables in stack frames
are only written a limited number of times, allowing wear
leveling inside stack frames, as demonstrated in the Loop2-
Recursion data in Figure 1. Thus, the recursion could provide
better wear leveling than the original loop.

IV. LOOP2RECURSION

In this section, we elaborate on our wear-leveling technique
Loop2Recursion, which automatically transforms loops into
equivalent recursions.

A. Design Considerations

We implement Loop2Recursion as a pass run by LLVM’s
code optimization tool, opt. This greatly simplifies the process
of loop transformation and exhibits many advantages.

• As there are various front-ends to compile different
languages (such as C, C++, Rust, Swift) into LLVM IR,
Loop2Recursion can be applied to many languages.

• Compared with assembly language, LLVM IR is
platform-neutral. Thus, Loop2Recursion is applicable to
a myriad of target platforms.

• By running relevant passes, opt can detect loops in LLVM
IR and convert them into canonical forms. As a result,
we can focus on a unified, standardized form of loops
without having to handle the burden of different types of
loops (for, while, do-while, etc.) and control statements
(break, continue, return, goto, throw, etc.).

Our work mainly targets embedded systems, where a full
cache hierarchy might not be preferable [41]. For systems with
caches, we propose a selective loop transformation method as
depicted in Section VI.

B. Process of Transforming a Loop

The process of transforming a loop can be divided into
four steps: (1) converting the loop into a canonical form,
(2) determining the recursive function’s parameters and return
values, (3) creating the recursive function, and (4) substituting
the loop with the recursive function. Below we describe each
of these steps in detail.

1) Converting the Loop into a Canonical Form: The first
step of transforming a loop is converting the loop into a canon-
ical form known as the LoopSimplify form. The LoopSimplify
form adds the following constraints to loops.

• Basic blocks within the loop induce a maximal strongly
connected subgraph.

• There is only one basic block outside the loop, Preheader,
with an out edge pointing into the loop. The target of the
out edge is known as Header.

• There is only one basic block within the loop, Latch, with
an out edge pointing towards Header. Latch may also
have other out edges pointing toward other basic blocks
within the loop.

• There is at least one Exiting basic block within the loop
with out edges pointing towards basic blocks outside
the loop. Each target of such an out edge is known
as Exit. Exiting blocks may also have other out edges
pointing towards other basic blocks within the loop, but
Exit blocks only have Exiting blocks as predecessors.

Figure 2 depicts a loop in the LoopSimplify form.

Fig. 2. A Loop in the LoopSimplify Form

The LoopSimplify form greatly simplifies the analysis and
transformation of loops. By converting loops into the Loop-
Simplify form, we can take the same approach to handle
different loops present in source code. This conversion is
already supported by the LLVM opt tool.

2) Determining the Recursive Function’s Parameters and
Return Values: A loop generally uses some variables defined
outside the loop. To make these variables accessible inside the
generated recursive function, we can pass them as arguments
to the recursive function.

These variables can be divided into two classes: variant
variables and invariant variables.

Variant variables are variables updated in each loop itera-
tion, such as loop variables. As entering a loop from outside
of the loop implies arriving at the loop’s Header basic block,
and entering the next iteration of the loop involves branching
to Header from Latch, we can fetch variant variables from the
Φ functions in the loop’s Header.

In contrast, invariant variables remain unchanged for the
whole loop. To fetch them, we can iterate all instructions in
the loop (aside from the Φ functions in the loop’s Header)
and check their operands. If an operand is defined outside the
loop and is not a global variable, it is an invariant variable.

In addition to variables defined outside the loop and used
within the loop, there may also be variables defined within
the loop and used outside the loop. Having transformed the
loop into a recursive function, to allow these variables to be
used after calling the recursive function, we can return them
from the recursive function. Specifically, we tailor a structure
known as the Return Value Structure, which packs all return
values. An instance of the Return Value Structure is created
in the last call to the recursive function before being returned
from the recursive function.

3) Creating the Recursive Function: After acquiring infor-
mation about the loop, we can create the recursive function.

In the original loop structure, a branch from Latch to Header
allows us to enter the next iteration of the loop, while a branch

5

from Exiting to Exit enables us to exit the loop. Thus, in the
generated recursive function, it is viable to recursively call
the function after entering the Latch basic block and begin
returning from recursion after entering the Exiting basic block.
To implement this, we can create an empty recursive function,
move all the basic blocks within the loop to the recursive
function, and add the following modifications. The structure
of the recursive function is depicted in Figure 3.

• Insert a RecursivelyCallFunction basic block that recur-
sively calls the function and returns. Modify the Latch to
Header edge to point to RecursivelyCallFunction.

• Insert a series of ReturnFromRecursion basic blocks that
correspond with the original Exit blocks. Return from the
recursive function in each ReturnFromRecursion block.
Modify each out edge from Exiting to Exit to point to
the corresponding ReturnFromRecursion.

Fig. 3. Structure of the Recursive Function

When exiting the original loop, different Exiting basic
blocks may lead to different Exit blocks. However, in the
generated recursive function, no matter which ReturnFrom-
Recursion block we enter, we will eventually reach the same
block after returning from recursion - the block that initially
called the recursive function. Thus, should there be multiple
Exit blocks, we can label each Exit block and implement the
ID of the target Exit block as an additional return value of the
recursive function. Under such circumstances, we will branch
to the relevant Exit block based on such a return value after
returning from recursion.

4) Substituting the Loop with the Recursive Function:
Having created the recursive function, we shall substitute the
loop with the recursive function. The modifications are as
follows.

• Insert a basic block, CallRecursiveFunction, into the
function containing the original loop.

• Modify the out edge from Preheader to Header to point
to CallRecursiveFunction.

• Call the recursive function in CallRecursiveFunction.

Afterwards, should there be multiple Exit blocks, then:

• Insert a basic block, BranchToExit, and branch to it after
calling the recursive function in CallRecursiveFunction.

• Branch to the appropriate Exit block according to the
returned target Exit block ID in BranchToExit.

The process of calling the recursive function in the case of
multiple Exit blocks is depicted in Figure 4. However, should

Fig. 4. The Process of Calling the Recursive Function in the Case of Multiple
Exit Blocks

there be only one Exit block, we shall directly branch to that
block from CallRecursiveFunction instead.

Finally, we shall replace each of the Φ functions in the
Exit blocks with the appropriate return values of the recursive
function.

5) Handling Nested Loops: It is often the case that there
are loops nested within other loops. To handle this situation,
whenever a recursive function is generated, we detect whether
there are loops within the function body. Then, for each
detected loop, we transform it into a new recursive function.
This process is repeated for each generated recursive function
until no more nested loops are detected.

Following such a procedure to handle nested loops, we
adopt the following scheme to name our generated recursive
functions. If there are m loops within a function f, the
recursive function generated from the ith loop will be named
f$i. Thus, if there are n loops nested within the ith loop in
f, the recursive function generated from the jth nested loop
will be named fij, as it is the jth loop in f$i.

C. Optimizations to Loop2Recursion

Although transforming loops into recursions improves stack
wear leveling, it may also significantly increase stack memory
usage, even leading to stack overflow, and incur a performance
cost. As a result, we propose several optimizations to reduce
the stack sizes and instruction counts of the generated recursive
functions.

1) Optimizing Passing Invariant Variables: As invariant
variables remain unchanged throughout the loop, the same val-
ues are passed as arguments each time the recursive function
is called. In addition, a recursive function generated from an
inner loop may share many invariant variables with a recursive
function generated from an outer loop. This opens up an
opportunity for optimization.

Instead of passing invariant variables as arguments to the
generated recursive functions, we can store these invariant
variables as global variables in the data segment of the memory
before calling the recursive function, and access them through
such global variables in the recursive function.

We give an example of this optimization below. Listing 3
presents two recursive functions, fft float$2 and fft float$2$0,
generated from a loop hierarchy in the fft benchmark before
optimizing invariant variables. Listing 4 presents the same
two recursive functions after optimizing invariant variables.
By comparing Listings 3 and 4, it is evident that invariant

6

variables account for a large portion of the generated recursive
functions’ parameters before optimization. In addition, three
invariant variables of fft float$2 generated from an outer
loop, i32 %arg2, float* %arg3, float* %arg4,
are also passed on as invariant variables to fft float$2$0
generated from an inner loop.

Listing 3. Two Recursive Functions Generated From a Loop Hierarchy in
the fft Benchmark Before Optimizing Invariant Variables
define void @"fft_float$2"(
i32 %arg,
i32 %arg1,
i32 %arg2,
float* %arg3,
float* %arg4,
double %arg5,
i1 %arg6

) {
; omitted code

"fft_float$2$0_call_recursive_function":
call void @"fft_float$2$0"(

i32 0,
i32 %arg,
i32 %arg2,
i32 %arg1,
float* %arg3,
float* %arg4,
double %call22,
i1 %cmp37236,
double %call20,
double %mul27,
i32 %arg,
double %cos,
double %call24

)
br label %for.end110.loopexit
; omitted code

}

define void @"fft_float$2$0"(
i32 %arg,
i32 %arg1,
i32 %arg2,
i32 %arg3,
float* %arg4,
float* %arg5,
double %arg6,
i1 %arg7,
double %arg8,
double %arg9,
i32 %arg10,
double %arg11,
double %arg12

) {
; omitted code

}

Listing 4. The Two Recursive Functions in Listing 3 After Optimizing
Invariant Variables
define void @"fft_float$2"(i32 %arg, i32 %arg1) {
; omitted code

"fft_float$2$0_call_recursive_function":
call void @"fft_float$2$0"(i32 0, i32 %arg)
br label %for.end110.loopexit
; omitted code

}

define void @"fft_float$2$0"(i32 %arg, i32 %arg1) {
; omitted code

}

By converting invariant variables from function parameters
to global variables, the number of parameters of the generated
recursive functions is reduced, and invariant variables can

be shared between recursive functions generated from outer
loops and those generated from inner loops. This reduces
the generated recursive functions’ stack sizes and eliminates
instructions passing the invariant variables as arguments.

2) Optimizing Passing Return Values: When using a Return
Value Structure, the created instance behaves like an invariant
variable, as it is modified only once in the last call to the
recursive function before being returned from each recursion
layer. Accordingly, we can allocate the instance in the data
segment of the memory as well. This reduces stack usage and
eliminates instructions returning the instance.

V. LIMITING RECURSION DEPTH

Although the optimizations mentioned above can reduce
the stack sizes and instruction counts of the generated re-
cursive functions, deep recursions left unchecked still have
the potential to consume excessive stack space, resulting in
stack overflow exceptions. To solve this problem, it is viable
to limit recursion depth. We can accomplish this in two
ways: iteratively invoking a depth-limited recursive function,
or invoking a recursive function containing loop iterations.

A. Iteratively Invoking a Depth-limited Recursive Function

To limit recursion depth to k, we can transform a large loop
of n iterations into a smaller loop of n/k iterations, with each
iteration calling a recursive function with a depth limit of k.

Such a scheme requires us to track recursion depth. This
can be implemented using an additional parameter serving as a
recursion depth counter. When the recursive function is called
from outside the recursive function, 0 is passed. The caller’s
parameter is incremented with each recursive call and passed
to the callee. Should the incremented parameter equals the
recursion depth limit, we will return from recursion instead
of continuing recursion before invoking the recursive function
from the outside again.

Such a scheme also requires knowing the appropriate values
of variant variables to pass to the recursive function each
time and when to stop. Thus, we can tailor a Recursion State
Structure that encompasses such information. Analogous to the
Return Value Structure, we can also allocate an instance of the
Recursion State Structure in the data segment of the memory.
Whenever we return from recursion due to the recursion depth
limit, the subsequent values of the variant parameters and the
value false (meaning the recursive function has to be invoked
again from the outside) are written to the Recursion State
Structure instance. In contrast, the value true is written in
the last call to the recursive function. In iteratively invoking
the recursive function, such a boolean value is checked each
time the recursive function returns. If it is false, the next
values of the variant variables are fetched from the Recursion
State Structure instance, and the recursive function is invoked
again. Elsewise, we have finished.

The following adjustments are made to the recursive func-
tion to implement such a scheme. The structure of the depth-
limited recursive function is depicted in Figure 5.

• Insert two basic blocks, IncrementDepthCounter and
SaveRecursionState, into the recursive function.

7

• Modify the out edge from Latch to RecursivelyCallFunc-
tion to point to IncrementDepthCounter.

• Increment the depth counter parameter and compare
the incremented depth counter with the recursion depth
limit in IncrementDepthCounter. If the incremented depth
counter is less than the recursion depth limit, branch to
RecursivelyCallFunction. Otherwise, branch to SaveRe-
cursionState.

• Pass the incremented depth counter in the recursive
function call in RecursivelyCallFunction.

• Write the following values of the variant parameters
and the value false to the Recursion State Structure
instance, before returning from the recursive function in
SaveRecursionState.

• Write the value true to the Recursion State Structure
instance before returning from the recursive function in
each ReturnFromRecursion block.

Fig. 5. Structure of the Depth-limited Recursive Function

In addition, the function containing the original loop is also
modified to support invoking the recursive function iteratively.
The modifications are as follows, and the process of invoking
the recursive function iteratively is depicted in Figure 6.

• Insert a basic block, ExtractNextValues, into the function
containing the original loop.

• Fetch the next values of the variant parameters from
the Recursion State Structure instance and branch to
CallRecursiveFunction in ExtractNextValues.

• Modify CallRecursiveFunction.

– Add Φ functions to the beginning of CallRecur-
siveFunction to select the values of the variant pa-
rameters. If arriving at CallRecursiveFunction from
ExtractNextValues, select the following values ex-
tracted from the Recursion State Structure instance.
Elsewise, select the original values of the variant
parameters.

– After calling the recursive function, extract the
boolean value indicating whether we have finished
iteratively invoking the recursive function from the
Recursion State Structure instance. If it is false,
branch to ExtractNextValues. Elsewise, branch to
CallRecursiveFunction’s original successor.

Fig. 6. The Process of Invoking the Recursive Function Iteratively

B. Invoking a Recursive Function Containing Loop Iterations

Alternatively, we can include n/k iterations of the original
loop within the recursive function to limit recursion depth to
a threshold value k. This is implemented as follows.

• Insert a basic block, PreheaderInRecursion, at the begin-
ning of the generated recursive function.

• Branch to Header in PreheaderInRecursion.
• Add a Φ function at the beginning of Header that serves

as a loop iteration counter. Select the value 0 if the control
flow is from PreheaderInRecursion.

• Insert a basic block, IncrementLoopCounter, into the
generated recursive function.

• Modify the out edge from Latch to RecursivelyCallFunc-
tion to point to IncrementLoopCounter.

• Increment the current loop iteration counter in Increment-
LoopCounter. If the incremented loop iteration counter
is less than the loop iteration limit, branch to Header.
Otherwise, branch to RecursivelyCallFunction.

• Modify the Φ function serving as the loop iteration
counter at the beginning of Header. Select the incre-
mented loop counter if the control flow is from Incre-
mentLoopCounter.

The structure of the recursive function containing loop
iterations is depicted in Figure 7.

Fig. 7. Structure of the Recursive Function Containing Loop Iterations

8

VI. SELECTIVE LOOP TRANSFORMATION FOR PLATFORMS
WITH CACHES

As stated in Section IV-A, Loop2Recursion mainly targets
embedded systems without a cache hierarchy due to caches
often being undesirable in an embedded environment. How-
ever, we also extend Loop2Recursion to support platforms
with caches by performing a selective transformation of loops.
Specifically, the following features identify the loops that
should be ignored during loop transformation.

• Nested loops, which usually perform computational-
intensive calculations with high memory locality.

• Loops without function calls and making few writes to
the stack.

It is easy to collect the first feature by visiting the loop
structures. For the second feature, dynamic profiling can be
employed to check whether a loop incurs hot writes to the
stack. Alternatively, a pre-compilation can be used to generate
assembly instructions first, and then all instructions within a
loop are visited to check whether they iteratively write to the
stack with the same offset.

VII. EXPERIMENTAL STUDY

We have implemented Loop2Recursion as an LLVM Pass
targeting LLVM 13.0.1. We conduct the following experimen-
tal studies.

• Comparing no wear leveling, the state-of-the-art dynamic
stack [20], [23], and Loop2Recursion under typical pa-
rameters.

• Evaluating our optimizations to Loop2Recursion.
• Evaluating our two measures to limit recursion depth,

which includes assessing both iteratively invoking a
depth-limited recursive function and invoking a recursive
function containing loop iterations, before determining
which approach is better in terms of stack memory usage
and wear leveling effectiveness.

• Evaluating the selective loop transformation method on a
cache-enabled architecture.

The aspects assessed and the corresponding indicators used
in the experiment are as follows.

• Wear leveling effectiveness. Due to the assumption that
NVM’s lifespan is determined by the worst wear degree,
we adapt the number of writes on the hottest stack address
as a metric of the overall wear leveling effectiveness.

• Wear leveling overhead, measured by maximum stack
usage and instruction count.

We perform our evaluations using programs from MiBench
[24]. First, the source code for each program is compiled
with “clang -O2” to LLVM IR. Then, the executables are
generated by compiling the LLVM IR for each program, either
directly (in the case of no wear leveling) or after running the
appropriate passes with opt to transform the LLVM IR (as for
dynamic stack and Loop2Recursion).

To acquire our data, we have implemented two profiling
tools based on Intel Pin [42], one that generates logs recording
events such as function calls, function returns, memory reads,
and memory writes during the execution of a program, and

TABLE I
WRITES ON THE HOTTEST STACK ADDRESS

Benchmark No WL DynamicStack
Change

Loop2Recursion
Change

basicmath 3.73e+05 -79.44% -86.88%
bf 1.28e+06 -24.41% -87.81%
bitcnts 6.05e+06 -82.64% -98.68%
crc 32 2.74e+06 -0.02% -50.01%
dijkstra 4.51e+06 0.01% -98.90%
fft 3.04e+05 -81.05% -89.81%
patricia 3.86e+05 -74.73% -89.13%
pbmsrch 1.46e+03 -34.29% -97.12%
qsort 5.82e+04 -65.63% -53.55%
rawcaudio 1.89e+06 -66.21% -98.85%
rawdaudio 2.05e+06 -75.53% -98.87%
sha 2.05e+05 -92.86% -86.30%
susan 3.47e+06 0.00% -99.48%

the other that counts a program’s executed instructions. Other
measures, including stack sizes and the number of writes on
each stack memory address, can be derived by analyzing the
logs generated from the first Pin tool.

All the evaluations are conducted on Linux (kernel version
5.3.0) with an Intel Core i5-4278U 2.60 GHz CPU and
8 GB of DRAM memory (as a proxy of NVM). For the
cache-enabled architecture, we implement a cache simulator
simulating a 4KB, 64-way associative data cache, which
references the parameters of ARM940T1. All source code,
including the Loop2Recursion LLVM Pass, the Intel Pin-based
profiling tools, and data analysis Python scripts, are available
on GitHub2.

A. Comparing No Wear Leveling, Dynamic Stack, and Loop-
2Recursion

We first compare our Loop2Recursion under typical settings
with no wear leveling and the state-of-the-art dynamic stack
[20], [23]. For the dynamic stack, the wear-aware memory
allocator UWLalloc [23] is employed, limiting the number
of stack frames allocated on each memory address. We set
the allocation limit to 300, as proposed in the original work.
For Loop2Recursion, we iteratively invoke a depth-limited
recursive function to limit recursion depth and set the recursion
depth limit to 64.

1) Wear Leveling Effectiveness: Table I compares writes
on the hottest stack address of no wear leveling, dynamic
stack, and Loop2Recursion. The dynamic stack and Loop-
2Recursion significantly decrease the write count on the
hottest stack address compared to no wear leveling. However,
Loop2Recursion achieves an overall reduction much higher
than the dynamic stack. Although the dynamic stack slightly
outperforms Loop2Recursion in some benchmarks (qsort and
sha), Loop2Recursion provides uncompromising and more
uniform reduction in writes on the hottest stack address for
all benchmarks. As a result, Loop2Recursion exhibits higher
wear leveling effectiveness.

The wear leveling effectiveness can be demonstrated another
way, i.e., the distribution of writes over the stack memory
space. For example, Figure 8 shows the distribution of writes

1https://developer.arm.com/documentation/ddi0144/b/
2https://github.com/abbaswu/loop2recursion

9

101

102

103

104

105

106

107

Baseline
Loop2Recursion

Fig. 8. Writes on Stack Addresses for dijkstra. The X-axis is the stack address
space, while the Y-axis is the number of writes.

TABLE II
MAXIMUM STACK USAGES

Benchmark No WL DynamicStack
Change

Loop2Recursion
Change

basicmath 2.78e+03 14961.49% 68.39%
bf 9.20e+03 2443.39% 89.57%
bitcnts 2.75e+03 8139.83% 148.26%
crc 32 2.16e+03 13541.85% 8.89%
dijkstra 2.58e+03 3209.63% 475.16%
fft 2.82e+03 5842.61% 277.84%
patricia 3.17e+03 12592.42% 127.27%
pbmsrch 2.37e+03 56.08% 511.49%
qsort 7.68e+06 1.85% 0.02%
rawcaudio 1.16e+04 4.34% 23.72%
rawdaudio 1.16e+04 4.34% 6.21%
sha 1.01e+04 212.10% 51.42%
susan 3.72e+05 0.05% 2.95%

over the stack area for both no wear leveling and Loop2-
Recursion for the dijkstra benchmark. It illustrates that the
Loop2Recursion could achieve a much more even distribution
of writes over the whole stack memory space and reduce writes
on the hottest stack address.

2) Maximum Stack Usage: Table II compares the maxi-
mum stack usages of no wear leveling, dynamic stack, and
Loop2Recursion. The dynamic stack significantly increases
maximum stack usage over no wear leveling. Although it
is possible to reduce the stack usage of the dynamic stack
by setting a larger allocation limit for UWLalloc, this may
negatively affect wear leveling effectiveness. In comparison,
the increase in maximum stack usage under Loop2Recursion is
much lower and more uniform, which translates to better
overall maximum stack usage.

3) Instruction Count: Table III compares the instruction
counts of no wear leveling, dynamic stack, and Loop2-
Recursion. The dynamic stack incurs significant performance
overhead, as about twenty times more instructions are executed
on average compared to no wear leveling. This overhead
comes from the additional allocation and deallocation opera-
tions for dynamically allocating stack frames and positively
correlates to the number of function calls. Compared to
the dynamic stack, Loop2Recursion has substantially lower
performance overhead, with each benchmark executing far
fewer instructions than under the dynamic stack.

TABLE III
INSTRUCTION COUNTS

Benchmark No WL DynamicStack
Change

Loop2Recursion
Change

basicmath 4.94e+07 2618.82% 2.05%
bf 5.19e+07 6086.06% 22.92%
bitcnts 9.13e+07 3640.74% 48.78%
crc 32 4.94e+07 8780.95% 25.43%
dijkstra 1.03e+08 212.18% 40.35%
fft 3.02e+07 3347.48% 2.83%
patricia 7.26e+07 2250.64% 1.23%
pbmsrch 1.57e+05 10132.18% 13.17%
qsort 1.46e+07 5951.21% 3.17%
rawcaudio 1.03e+08 16.51% 3.67%
rawdaudio 7.30e+07 23.38% 18.31%
sha 2.14e+07 255.43% 27.60%
susan 7.26e+07 21.93% 15.13%

TABLE IV
MAXIMUM STACK USAGES

Benchmark Unoptimized Optimized Change

basicmath 4.98e+04 -32.16%
bf 1.39e+06 -81.20%
bitcnts 7.20e+06 -33.33%
crc 32 8.76e+07 -50.00%
dijkstra 1.02e+05 -46.63%
fft 4.59e+05 -57.09%
patricia 1.22e+06 -57.00%
pbmsrch 1.34e+04 -19.02%
qsort 8.32e+06 -3.85%
rawcaudio 2.30e+05 -18.71%
rawdaudio 1.82e+05 -14.85%
sha 9.04e+04 -80.29%
susan 4.19e+05 -9.08%

B. Evaluation of Our Optimizations to Loop2Recursion

As stated in Section IV-C, this paper proposed to optimize
the overhead of recursive function calling by improving pass-
ing invariant variables and return values. Here the effectiveness
of these optimizations is evaluated.

1) Maximum Stack Usage: Table IV compares the max-
imum stack usages of unoptimized and optimized Loop2-
Recursion. Apart from qsort, in which the maximum stack
usage remains relatively unchanged, our optimizations have
significantly reduced the maximum stack usage of most bench-
marks.

2) Instruction Count: Table V compares the instruction
counts of unoptimized and optimized Loop2Recursion. Similar
to the maximum stack usage trend, most benchmarks’ instruc-
tion counts have also been reduced. A notable exception is
pbmsrch, where there is a slight (1.15%) increase in instruction
count. Such an increase is due to a generated recursive
function frequently accessing an invariant parameter, which
was formerly placed in a register but is now in the memory
due to optimization, which incurs an extra instruction to pass
the parameters. However, its effect on the total instruction
counts of the benchmarks is quite limited, as evidenced by
the reduction in instruction count for all other benchmarks.

3) Wear Leveling Effectiveness: Table VI compares the
number of writes on the hottest stack address of unoptimized
and optimized Loop2Recursion. The number of writes on the
hottest stack address is determined by both the distribution of

10

TABLE V
INSTRUCTION COUNTS

Benchmark Unoptimized Optimized Change

basicmath 5.02e+07 -0.92%
bf 7.95e+07 -29.35%
bitcnts 1.16e+08 -10.28%
crc 32 5.90e+07 -13.93%
dijkstra 1.34e+08 -13.00%
fft 3.12e+07 -2.05%
patricia 7.31e+07 -0.95%
pbmsrch 1.68e+05 1.15%
qsort 1.51e+07 -3.12%
rawcaudio 1.03e+08 -2.01%
rawdaudio 8.26e+07 -3.33%
sha 2.49e+07 -9.30%
susan 9.38e+07 -26.73%

TABLE VI
WRITES ON THE HOTTEST STACK ADDRESS

Benchmark Unoptimized Optimized Change

basicmath 3.60e+04 55.55%
bf 1.56e+05 0.00%
bitcnts 8.60e+01 37.21%
crc 32 1.37e+06 0.00%
dijkstra 1.00e+04 6.77%
fft 5.78e+02 34.26%
patricia 2.18e+04 0.00%
pbmsrch 5.20e+01 17.31%
qsort 2.30e+04 0.06%
rawcaudio 1.25e+03 13.39%
rawdaudio 1.37e+03 6.64%
sha 1.46e+04 0.00%
susan 1.18e+04 50.44%

stack frames and the distribution of writes within stack frames.
The former can be measured by the maximum number of stack
frames on a stack address, while the maximum number of
writes within each stack frame indicates the latter. Table VII
compares the maximum number of stack frames on a stack
address of unoptimized and optimized Loop2Recursion, while
Table VIII compares the maximum number of writes within
each stack frame.

It is clear that our optimizations have a negligible effect on
the maximum number of writes within each stack frame as
illustrated in Table VIII, while causing a significant increase

TABLE VII
MAXIMUM NUMBER OF STACK FRAMES ON A STACK ADDRESS

Benchmark Unoptimized Optimized Change

basicmath 42182.00 23.96%
bf 138.00 234.06%
bitcnts 64.00 37.50%
crc 32 17.00 5.88%
dijkstra 7516.00 39.61%
fft 334.00 30.54%
patricia 96.00 91.67%
pbmsrch 48.00 2.08%
qsort 20014.00 0.07%
rawcaudio 742.00 2.16%
rawdaudio 825.00 -6.42%
sha 776.00 794.46%
susan 7125.00 61.74%

TABLE VIII
MAXIMUM NUMBER OF WRITES WITHIN EACH STACK FRAME

Benchmark Unoptimized Optimized Change

basicmath 3.60e+04 0.00%
bf 1.56e+05 0.00%
bitcnts 2.20e+01 -4.55%
crc 32 1.37e+06 0.00%
dijkstra 1.00e+04 0.00%
fft 6.22e+02 0.00%
patricia 2.18e+04 0.00%
pbmsrch 1.40e+01 0.00%
qsort 1.00e+04 0.00%
rawcaudio 1.00e+01 0.00%
rawdaudio 1.00e+01 0.00%
sha 1.46e+04 0.00%
susan 1.00e+01 0.00%

-1.0 -0.5 0.0 0.5 1.0 1.5
Normalized Average Writes on Hottest Stack Address

-0.5

0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

 A
ve

ra
ge

 M
ax

 S
ta

ck
 U

sa
ge

s

Unoptimized, Limit Recursion Depth
Optimized, Limit Recursion Depth

Fig. 9. Average Maximum Stack Usages and Writes on The Hottest Stack
Address Under Different Recursion Depth Limits

in the maximum number of stack frames on a stack address
as shown in Table VII. Thus, the increase in the number of
writes on the hottest stack address can be mainly attributed to
a denser distribution of stack frames.

It is worth mentioning that the denser distribution of stack
frames is mainly due to the aggressive reduction of maximum
stack usage as illustrated in Table IV. Therefore, we further
compare the unoptimized and optimized Loop2Recursionon
wear leveling under similar maximum stack usage.

By iteratively invoking a depth-limited recursive function
in both unoptimized and optimized Loop2Recursion, we can
profile all benchmarks to acquire the average maximum stack
usages and writes on the hottest stack address under different
recursion depth limits, as shown in Figure 9.

From Figure 9, it is clear that with average maximum
stack usage controlled, our optimized Loop2Recursion comes
with significantly reduced average writes on the hottest stack
address. Thus, when limiting recursion depth, our optimized
Loop2Recursion has a significant edge over unoptimized
Loop2Recursion in terms of wear leveling effectiveness.

C. Evaluation of Two Measures to Limit Recursion Depth

The following section will evaluate our two measures to
limit recursion depth. Both measures are implemented in our
optimized Loop2Recursion.

1) Results of Iteratively Invoking a Depth-limited Recursive
Function:

11

TABLE IX
WRITES ON THE HOTTEST STACK ADDRESS

Benchmark Unlimited 8
Change

16
Change

32
Change

64
Change

128
Change

basicmath 5.60e+04 12.16% -9.82% -14.63% -12.60% -14.70%
bf 1.56e+05 30.64% 0.00% 0.00% 0.00 % 0.00%
bitcnts 1.18e+02 317711.86%150893.22%107110.17%67490.68% 33910.17%
crc 32 1.37e+06 0.00% 0.00% 0.00% 0.00% 0.00%
dijkstra 1.07e+04 3122.34% 1532.07% 736.83% 363.52% 160.42%
fft 7.76e+02 16612.50% 11421.01% 7659.79% 3895.49% 2051.42%
patricia 2.18e+04 530.03% 327.99% 159.89% 92.65% -0.09%
pbmsrch 6.10e+01 345.90% 157.38% 32.79% -31.15% -31.15%
qsort 2.30e+04 57.68% 46.83% 16.94% 17.55% 8.70%
rawcaudio 1.41e+03 12418.74% 6058.27% 2978.50% 1436.92% 669.65%
rawdaudio 1.46e+03 12347.50% 6173.51% 3086.58% 1481.25% 688.90%
sha 1.46e+04 835.55% 360.47% 201.55% 91.81% 0.14%
susan 1.78e+04 683.21% 285.23% 108.82% 0.30% -12.56%

TABLE X
MAXIMUM STACK USAGES

Benchmark Unlimited 8
Change

16
Change

32
Change

64
Change

128
Change

basicmath 3.38e+04 -88.64% -86.88% -86.13% -86.13% -80.64%
bf 2.62e+05 -96.08% -95.54% -94.47% -93.34% -91.78%
bitcnts 4.80e+06 -99.91% -99.91% -99.90% -99.86% -99.77%
crc 32 4.38e+07 -99.99% -99.99% -99.99% -99.99% -99.99%
dijkstra 5.47e+04 -95.08% -92.33% -85.54% -72.90% -53.02%
fft 1.97e+05 -98.52% -97.88% -96.37% -94.60% -91.66%
patricia 5.26e+05 -99.31% -99.21% -99.02% -98.63% -97.85%
pbmsrch 1.08e+04 -67.65% -51.11% -18.02% 33.68% 34.07%
qsort 8.00e+06 -4.00% -3.99% -3.99% -3.97% -3.92%
rawcaudio 1.87e+05 -93.79% -93.79% -93.79% -92.32% -84.66%
rawdaudio 1.55e+05 -92.51% -92.51% -92.51% -92.05% -84.12%
sha 1.78e+04 -37.20% -30.73% -23.18% -14.02% 3.28%
susan 3.81e+05 -2.35% -2.35% -1.84% 0.58% 2.04%

a) Wear Leveling Effectiveness: Table IX compares the
writes on the hottest stack address under different recursion
depth limits. There is a clear trend that writes on the hottest
stack addresses decrease rapidly as the stack depth limit
increases. The reason is that, with a deeper recursive depth,
the frames will be distributed over a larger memory space,
and thus the hottest addresses may be cooled. Thus, avoiding
a shallow recursion depth limit is essential to avoid negatively
impacting the effectiveness of wear leveling.

b) Maximum Stack Usage: Table X compares the max-
imum stack usages under different recursion depth limits.
Limiting recursion depth is very effective at further reducing
stack memory usage. Furthermore, when the recursion depth
limit is not too large (below 64 in this experiment), although
increasing the recursion depth limit does affect maximum
stack usage, the increase is slight both overall and for most
benchmarks, as demonstrated in the slowly-changing increases
in stack size relative to unlimited recursion depth. However,
one should avoid setting a recursion depth limit that is too
high because this has the potential to go against our original
motivation of limiting stack size, as we can see in the
pronounced increase in stack size in several benchmarks such
as basicmath, dijkstra, rawcaudio, rawdaudio, and sha when
the recursion depth limit increases from 64 to 128.

It is worth noting that limiting recursion depth does increase
the stack frame sizes of the generated recursive functions,
resulting from the extra recursion depth counter parameter.
This may increase maximum stack usage when the recursion

TABLE XI
INSTRUCTION COUNTS

Benchmark Unlimited 8
Change

16
Change

32
Change

64
Change

128
Change

basicmath 4.97e+07 1.57% 1.46% 1.42% 1.42% 1.39%
bf 5.62e+07 15.45% 14.53% 14.07% 13.61% 13.51%
bitcnts 1.04e+08 36.42% 32.98% 31.24% 31.12% 30.58%
crc 32 5.07e+07 25.29% 23.44% 22.51% 22.05% 21.86%
dijkstra 1.17e+08 26.06% 24.52% 23.75% 23.29% 22.77%
fft 3.05e+07 1.84% 1.73% 1.68% 1.66% 1.63%
patricia 7.24e+07 1.76% 1.44% 1.56% 1.44% 1.47%
pbmsrch 1.70e+05 4.93% 4.89% 4.88% 4.87% 4.87%
qsort 1.46e+07 1.21% 2.80% 1.12% 3.02% 2.90%
rawcaudio 1.01e+08 9.09% 7.61% 6.88% 6.49% 5.86%
rawdaudio 7.98e+07 11.45% 9.59% 8.66% 8.18% 7.96%
sha 2.26e+07 25.86% 23.22% 20.74% 20.73% 20.70%
susan 6.87e+07 25.51% 21.64% 21.63% 21.63% 21.60%

depth limit is not significantly smaller than but on par with
the number of recursive calls, as evidenced by the increase in
maximum stack usage of the susan benchmark at a recursion
depth limit of 64 and 128. However, the increase, even if
present, is slight (as using the recursion depth counter adds
a single integer of only a few bytes to the generated recursive
functions’ stack frames), and most of the time, with the
recursion depth limit far less than the number of recursive
calls, the benefits greatly outweigh such a cost.

c) Instruction Count: Table XI compares the instruction
counts under different recursion depth limits. There is a
noticeable increase in instructions executed when limiting
recursion depth. This stems from passing an extra recursion
depth counter parameter to the generated recursive functions,
incrementing and comparing the recursion depth counter in
each invocation, saving the next values of variant variables
when recursion depth reaches the limit, as well as extracting
the next values when calling the recursive function again
outside of the recursive function. As increasing the recursion
depth limit leads to less saving to and loading from the
Recursion State Structure instance, there is a decrease in the
number of instructions executed. However, this decrease is
slight, and overall, the instruction count is not sensitive to
the recursion depth limit.

2) Results of Invoking a Recursive Function Containing
Loop Iterations:

a) Wear Leveling Effectiveness: Table XII compares
the writes on the hottest stack address under different loop
iterations. It is straightforward that, with the increase in
loop iterations, writes on the hottest stack addresses increase
rapidly, as the writes within each stack frame of the recursive
function are repeated every loop iteration. Thus, it is vital to
limit the number of loop iterations when retaining a portion
of the loop in the recursive function to avoid compromising
wear leveling effectiveness.

b) Maximum Stack Usage: Table XIII compares the
maximum stack usages under different loop iterations. With
the increased loop iterations of the retained loop within the
recursive function, maximum stack usage decreases before
gradually stabilizing. This is because more loop iterations lead
to fewer calls to the recursive function. Thus fewer allocated
stack frames and reduced stack usage. Quantitatively, the num-
ber of calls to the recursive function, which is also the number

12

TABLE XII
WRITES ON THE HOTTEST STACK ADDRESS

Benchmark 0 8 Change 16 Change 32 Change 64 Change

basicmath 5.60e+04 94.31% 406.32% 527.37% 531.60%
bf 1.56e+05 0.00% 0.00% 0.00% 0.00%
bitcnts 1.18e+02 433.90% 1088.14% 3,194.92% 6372.88%
crc 32 1.37e+06 0.00% 0.00% 0.00% 0.00%
dijkstra 1.07e+04 781.07% 1660.62% 4124.89% 8331.87%
fft 7.76e+02 317.78% 787.11% 1675.52% 2893.17%
patricia 2.18e+04 0.00% 0.00% 0.00% 0.00%
pbmsrch 6.10e+01 457.38% 929.51% 1595.08% 2290.16%
qsort 2.30e+04 0.13% 0.37% 0.88% 1.84%
rawcaudio 1.41e+03 513.01% 1093.07% 2247.95% 4978.36%
rawdaudio 1.46e+03 497.74% 1078.85% 2306.71% 4821.29%
sha 1.46e+04 747.72% 1550.89% 3559.21% 6296.50%
susan 1.78e+04 1120.12% 2609.94% 5424.05% 10710.91%

TABLE XIII
MAXIMUM STACK USAGES

Benchmark 0 8 Change 16 Change 32 Change 64 Change

basicmath 3.38e+04 -70.93% -82.86% -88.73% -91.48%
bf 2.62e+05 -78.37% -87.45% -91.99% -94.31%
bitcnts 4.80e+06 -68.75% -84.37% -92.18% -96.08%
crc 32 4.38e+07 -68.75% -84.37% -92.19% -96.09%
dijkstra 5.47e+04 -79.72% -89.73% -94.70% -95.41%
fft 1.97e+05 -74.89% -87.36% -93.60% -96.63%
patricia 5.26e+05 -82.83% -91.12% -95.26% -97.33%
pbmsrch 1.08e+04 -70.01% -77.10% -79.17% -79.17%
qsort 8.00e+06 -2.75% -3.37% -3.69% -3.84%
rawcaudio 1.87e+05 -76.16% -88.04% -93.80% -93.80%
rawdaudio 1.55e+05 -75.09% -87.50% -92.52% -92.52%
sha 1.78e+04 -31.90% -38.10% -41.96% -43.22%
susan 3.81e+05 -2.44% -2.44% -2.44% -2.44%

of allocated stack frames, equals the ceiling of the number
of iterations of the original loop divided by loop iterations.
According to such a relationship, there will be gradually
diminishing returns in reducing recursive function invocations
with the increase in loop iterations. Thus, maximum stack
usage will gradually stabilize.

c) Instruction Count: Table XIV compares the instruc-
tion counts under different loop iterations. There is a notice-
able increase in instructions executed, which slowly declines
and stabilizes with the increase in loop iterations. This is
because retaining a portion of the loop in the recursive
function involves initializing a loop iteration counter in each
invocation of the recursive function, as well as incrementing
and comparing the loop iteration counter in each loop iteration.
With the increase in loop iterations, fewer calls to the recursive
function will be made. Thus, the instructions for calling the
recursive function and initializing the loop iteration counter
are reduced. However, due to diminishing returns in reducing
recursive function invocations, such a reduction in instructions
will also gradually level out. In addition, as the total number
of loop iterations in all invocations of the recursive function
remains constant, instructions related to incrementing and
comparing the loop iteration counter in each loop iteration
remain unchanged. Thus, the number of instructions executed
stabilizes with the increase in loop iterations.

3) Comparison of The Two Measures to Limit Recursion
Depth: To determine which approach is better at reducing
stack memory usage, we acquire maximum stack usages and
writes on the hottest stack address averaged over all bench-

TABLE XIV
INSTRUCTION COUNTS

Benchmark 0 8 Change 16 Change 32 Change 64 Change

basicmath 4.97e+07 1.81% 1.68% 1.63% 1.63%
bf 5.62e+07 19.74% 18.49% 17.86% 17.23%
bitcnts 1.04e+08 58.61% 54.18% 51.92% 51.77%
crc 32 5.07e+07 40.13% 37.60% 36.33% 35.70%
dijkstra 1.17e+08 28.08% 25.84% 24.72% 24.06%
fft 3.05e+07 2.75% 2.61% 2.55% 2.52%
patricia 7.24e+07 2.38% 2.11% 2.22% 2.22%
pbmsrch 1.70e+05 4.45% 4.39% 4.37% 4.37%
qsort 1.46e+07 1.08% 0.98% 2.56% 2.56%
rawcaudio 1.01e+08 26.93% 24.69% 23.57% 23.00%
rawdaudio 7.98e+07 29.97% 27.41% 26.14% 25.48%
sha 2.26e+07 63.47% 60.18% 57.13% 57.13%
susan 6.87e+07 62.02% 57.47% 57.46% 57.46%

-0.5 0.0 0.5 1.0 1.5 2.0
Normalized Average Writes on Hottest Stack Address

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

No
rm

al
ize

d
Av

er
ag

e
M

ax
 S

ta
ck

 U
sa

ge
s

Limiting Recursion Depth
Retaining a Portion of the Loop in the Recursive Function

Fig. 10. Average Maximum Stack Usages and Writes on The Hottest Stack
Address Under Different Recursion Depth Limits and Loop Iterations

marks under different recursion depth limits (for iteratively
invoking a depth-limited recursive function) and loop iterations
(for invoking a recursive function containing loop iterations)
from Tables X, IX, XIII, and XII to draw the scatter plot
depicted in Figure 10.

Under the same average writes on the hottest stack ad-
dress, iteratively invoking a depth-limited recursive function
consistently provides lower average maximum stack usages,
as depicted in Figure 10. It is possible to reduce average
writes on the hottest stack address without sacrificing average
maximum stack usage when iteratively invoking a depth-
limited recursive function, which is achieved by increasing
the recursion depth limit. In comparison, there is an apparent
trade-off between average writes on the hottest stack address
and average maximum stack usage when invoking a recursive
function containing loop iterations. Thus, setting a mid-high
recursion depth limit and iteratively invoking a depth-limited
recursive function is the better approach, as it excels in both
stack memory overhead and the effectiveness of wear leveling.

D. Evaluation on Cache-enabled Architecture

When a cache is used, a memory write only happens when
a dirty cache line is written back to the memory. To evaluate
the wear leveling performance of Loop2Recursion and assess
the effectiveness of selective loop transformation, we compare
the number of writes on the hottest memory address between
no wear leveling, non-selective Loop2Recursion, and selective
Loop2Recursion in Figure XV.

The situation here is different from that on a cacheless
architecture. Some benchmarks, such as bitcnts and fft, ex-

13

TABLE XV
WRITES ON THE HOTTEST STACK ADDRESS

Benchmark No WL Non-selective Selective

basicmath 301 785 163
bf 15309 15592 15592
bitcnts 2 14064 2
crc 32 668 668 668
dijkstra 6120 30169 652
fft 46 1095 740
patricia 20864 10400 9080
pbmsrch 3 6 6
qsort 240 645 641
rawcaudio 0 21902 22
rawdaudio 0 21902 22
sha 39 156 154
susan 7 439 20

TABLE XVI
CACHE HIT RATIO

Benchmark No WL Non-selective Selective

basicmath 0.99 0.99 0.99
bf 0.93 0.85 0.84
bitcnts 1.00 0.97 1.00
crc 32 1.00 0.99 0.99
dijkstra 0.97 0.86 0.96
fft 1.00 0.98 0.99
patricia 0.95 0.94 0.94
pbmsrch 0.99 0.95 0.93
qsort 0.96 0.95 0.95
rawcaudio 1.00 0.82 1.00
rawdaudio 1.00 0.81 1.00
sha 1.00 1.00 1.00
susan 1.00 0.99 1.00

hibit very high locality, so there are few writebacks to the
hottest address without wear leveling. However, after applying
Loop2Recursion, the program’s locality decreases, resulting
in increased writebacks. However, this problem is generally
mitigated when performing selective loop transformation. This
is because the selective loop transformation skips transforming
loops with high locality. An exception is the bf benchmark,
where the writes to the hottest stack address are caused by
writing to a local variable in the main function outside a loop.
As a result, all methods exhibit similar writebacks.

We further the cache hit ratio between the no wear leveling,
non-selective Loop2Recursion, and selective Loop2Recursion
in Table XVI. For most benchmarks, although the cache
hit ratio drops after applying Loop2Recursion, selective loop
transformation raises it again (to 96.9% on average), and it is
generally on par with no wear leveling (98.3% on average).
Thus, under selective loop transformation, Loop2Recursion
has a negligible impact on cache performance. In conclusion,
Loop2Recursion can also work well on a cache-enabled archi-
tecture, as it significantly reduces the maximum write count
while slightly affecting the cache hit ratio.

VIII. CONCLUSION

We present Loop2Recursion, a compiler-assisted stack wear
leveling technique for NVM that automatically transforms
loops, significantly contributing to highly unbalanced stack
writes, into recursive functions. To reduce both the space

overhead and performance overhead of this transformation. In
addition, as deep recursions are still prone to stack overflow
exceptions, we propose two approaches to limit recursion
depth, namely iteratively invoking a depth-limited recursive
function and a recursive function containing loop iterations.
Furthermore, we propose selective loop transformation for
cache-enabled architectures, where we preserve loops not
causing uneven stack writes. Experimental results demonstrate
that Loop2Recursion can significantly reduce the number of
writes on the hottest stack address and improve the lifetime
of NVM with low overhead, outperforming the state-of-the-
art dynamic stack [20], [23], that our optimizations to the
transformation scheme are effective, that iteratively invoking
a depth-limited recursive function is the better approach to
limiting recursion depth, and that Loop2Recursion can also
work well on a cache-enabled architecture with only a minor
reduction in cache hits.

REFERENCES

[1] M. Kim, I.-J. Chang, and H.-J. Lee, “Segmented tag cache: A novel
cache organization for reducing dynamic read energy,” IEEE Transac-
tions on Computers, vol. 68, no. 10, pp. 1546–1552, 2019.

[2] B. Kim, S. H. Lee, H. Kim, D.-T. Nguyen, M.-S. Le, I. J. Chang,
D. Kwon, J. H. Yoo, J. W. Choi, and H.-J. Lee, “Pcm: precision-
controlled memory system for energy efficient deep neural network
training,” in 2020 Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, 2020, pp. 1199–1204.

[3] I. B. Peng, M. B. Gokhale, and E. W. Green, “System evaluation of the
intel optane byte-addressable nvm,” in Proceedings of the International
Symposium on Memory Systems, 2019, pp. 304–315.

[4] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras,
and B. Abali, “Enhancing lifetime and security of pcm-based main
memory with start-gap wear leveling,” in 2009 42nd Annual IEEE/ACM
international symposium on microarchitecture (MICRO). IEEE, 2009,
pp. 14–23.

[5] V. Gogte, W. Wang, S. Diestelhorst, A. Kolli, P. M. Chen,
S. Narayanasamy, and T. F. Wenisch, “Software wear management for
persistent memories,” in 17th USENIX Conference on File and Storage
Technologies (FAST 19), 2019, pp. 45–63.

[6] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high perfor-
mance main memory system using phase-change memory technology,”
in Proceedings of the 36th annual international symposium on Computer
architecture, 2009, pp. 24–33.

[7] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy efficient
main memory using phase change memory technology,” ACM SIGARCH
computer architecture news, vol. 37, no. 3, pp. 14–23, 2009.

[8] A. P. Ferreira, M. Zhou, S. Bock, B. Childers, R. Melhem, and D. Mossé,
“Increasing pcm main memory lifetime,” in 2010 Design, Automation
& Test in Europe Conference & Exhibition (DATE 2010). IEEE, 2010,
pp. 914–919.

[9] M. Zhao, L. Shi, C. Yang, and C. J. Xue, “Leveling to the last mile:
Near-zero-cost bit level wear leveling for pcm-based main memory,” in
2014 IEEE 32nd International Conference on Computer Design (ICCD).
IEEE, 2014, pp. 16–21.

[10] S. Kim, H. Jung, W. Shin, H. Lee, and H.-J. Lee, “Had-twl: Hot address
detection-based wear leveling for phase-change memory systems with
low latency,” IEEE Computer Architecture Letters, vol. 18, no. 2, pp.
107–110, 2019.

[11] H. Lee, H. Jung, H.-J. Lee, and H. Kim, “Bit-width reduction in write
counters for wear leveling in a phase-change memory system,” IEIE
Transactions on Smart Processing & Computing, vol. 9, no. 5, pp. 413–
419, 2020.

[12] M. Kim, H. Lee, H. Kim, and H.-J. Lee, “Wl-wd: Wear-leveling solution
to mitigate write disturbance errors for phase-change memory,” IEEE
Access, vol. 10, pp. 11 420–11 431, 2022.

[13] G. Dhiman, R. Ayoub, and T. Rosing, “Pdram: A hybrid pram and dram
main memory system,” in 2009 46th ACM/IEEE Design Automation
Conference. IEEE, 2009, pp. 664–669.

14

[14] C.-H. Chen, P.-C. Hsiu, T.-W. Kuo, C.-L. Yang, and C.-Y. M. Wang,
“Age-based pcm wear leveling with nearly zero search cost,” in Pro-
ceedings of the 49th Annual Design Automation Conference, 2012, pp.
453–458.

[15] L. Yu, T. Chen, and J. Wu, “A software-hardware collaborating frame-
work for wear leveling on phase change memory,” in 2012 IEEE 14th
International Conference on High Performance Computing and Com-
munication & 2012 IEEE 9th International Conference on Embedded
Software and Systems. IEEE, 2012, pp. 1360–1367.

[16] C. Pan, M. Xie, J. Hu, M. Qiu, and Q. Zhuge, “Wear-leveling for pcm
main memory on embedded system via page management and process
scheduling,” in 2014 IEEE 20th International Conference on Embedded
and Real-Time Computing Systems and Applications. IEEE, 2014, pp.
1–9.

[17] H. Aghaei Khouzani, Y. Xue, C. Yang, and A. Pandurangi, “Prolonging
pcm lifetime through energy-efficient, segment-aware, and wear-resistant
page allocation,” in Proceedings of the 2014 international symposium
on Low power electronics and design, 2014, pp. 327–330.

[18] I. Moraru, D. G. Andersen, M. Kaminsky, N. Tolia, P. Ranganathan,
and N. Binkert, “Consistent, durable, and safe memory management
for byte-addressable non volatile main memory,” in Proceedings of the
First ACM SIGOPS Conference on Timely Results in Operating Systems,
2013, pp. 1–17.

[19] S. Yu, N. Xiao, M. Deng, Y. Xing, F. Liu, Z. Cai, and W. Chen, “Walloc:
An efficient wear-aware allocator for non-volatile main memory,” in
2015 IEEE 34th International Performance Computing and Communi-
cations Conference (IPCCC). IEEE, 2015, pp. 1–8.

[20] Q. Li, Y. He, Y. Chen, C. J. Xue, N. Jiang, and C. Xu, “A wear-leveling-
aware dynamic stack for pcm memory in embedded systems,” in 2014
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2014, pp. 1–4.

[21] W. Li, L. Wu, M. Yuan, C. J. Xue, J. Xue, and Q. Li, “Loop2recursion:
Compiler-assisted wear leveling for non-volatile memory,” in 2020 IEEE
38th International Conference on Computer Design (ICCD). IEEE,
2020, pp. 581–588.

[22] X. Chen, Z. Qingfeng, Q. Sun, E. H.-M. Sha, S. Gu, C. Yang, and
C. J. Xue, “A wear-leveling-aware fine-grained allocator for non-volatile
memory,” in 2019 56th ACM/IEEE Design Automation Conference
(DAC). IEEE, 2019, pp. 1–6.

[23] W. Li, Z. Shuai, C. J. Xue, M. Yuan, and Q. Li, “A wear leveling aware
memory allocator for both stack and heap management in pcm-based
main memory systems,” in 2019 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2019, pp. 228–233.

[24] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown, “Mibench: A free, commercially representative
embedded benchmark suite,” in Proceedings of the fourth annual IEEE
international workshop on workload characterization. WWC-4 (Cat. No.
01EX538). IEEE, 2001, pp. 3–14.

[25] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change
memory as a scalable dram alternative,” in Proceedings of the 36th
annual international symposium on Computer architecture, 2009, pp.
2–13.

[26] X. Wu, J. Li, L. Zhang, E. Speight, R. Rajamony, and Y. Xie,
“Hybrid cache architecture with disparate memory technologies,” ACM
SIGARCH computer architecture news, vol. 37, no. 3, pp. 34–45, 2009.

[27] W. Xu, J. Liu, and T. Zhang, “Data manipulation techniques to reduce
phase change memory write energy,” in Proceedings of the 2009
ACM/IEEE international symposium on Low power electronics and
design, 2009, pp. 237–242.

[28] W. Zhang and T. Li, “Characterizing and mitigating the impact of
process variations on phase change based memory systems,” in 2009
42nd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2009, pp. 2–13.

[29] S. Cho and H. Lee, “Flip-n-write: A simple deterministic technique to
improve pram write performance, energy and endurance,” in Proceedings
of the 42nd Annual IEEE/ACM International Symposium on Microar-
chitecture, 2009, pp. 347–357.

[30] J. Hu, C. J. Xue, Q. Zhuge, W.-C. Tseng, and E. H.-M. Sha, “Towards
energy efficient hybrid on-chip scratch pad memory with non-volatile
memory,” in 2011 Design, Automation & Test in Europe. IEEE, 2011,
pp. 1–6.

[31] Q. Li, Y. Zhao, J. Hu, C. J. Xue, E. Sha, and Y. He, “Mgc: Multiple
graph-coloring for non-volatile memory based hybrid scratchpad mem-
ory,” in 2012 16th Workshop on Interaction between Compilers and
Computer Architectures (INTERACT). IEEE, 2012, pp. 17–24.

[32] Z. Shao, Y. Liu, Y. Chen, and T. Li, “Utilizing pcm for energy
optimization in embedded systems,” in 2012 IEEE computer society
annual symposium on VLSI. IEEE, 2012, pp. 398–403.

[33] L. A. Bathen and N. Dutt, “Havoc: A hybrid memory-aware virtualiza-
tion layer for on-chip distributed scratchpad and non-volatile memories,”
in DAC Design Automation Conference 2012. IEEE, 2012, pp. 447–
452.

[34] Y. Li, Y. Chen, and A. K. Jones, “A software approach for combating
asymmetries of non-volatile memories,” in Proceedings of the 2012
ACM/IEEE international symposium on Low power electronics and
design, 2012, pp. 191–196.

[35] J. Hu, C. J. Xue, Q. Zhuge, W.-C. Tseng, and E. H.-M. Sha, “Write
activity reduction on non-volatile main memories for embedded chip
multiprocessors,” ACM Transactions on Embedded Computing Systems
(TECS), vol. 12, no. 3, pp. 1–27, 2013.

[36] R. Liu, P. Jin, Z. Wu, X. Wang, S. Wan, and B. Hua, “Efficient
wear leveling for pcm/dram-based hybrid memory,” in 2019 IEEE
21st International Conference on High Performance Computing and
Communications; IEEE 17th International Conference on Smart City;
IEEE 5th International Conference on Data Science and Systems (HPC-
C/SmartCity/DSS). IEEE, 2019, pp. 1979–1986.

[37] H. Wang, Z. Shen, M. Zhao, X. Cai, and Z. Jia, “Clock-rwrf: a read-
write-relative-frequency page replacement algorithm for pcm and dram
of hybrid memory,” in 2020 IEEE 22nd International Conference on
High Performance Computing and Communications; IEEE 18th Inter-
national Conference on Smart City; IEEE 6th International Conference
on Data Science and Systems (HPCC/SmartCity/DSS). IEEE, 2020,
pp. 189–196.

[38] A. Filinski, “Recursion from iteration,” Lisp and Symbolic Computation,
vol. 7, no. 1, pp. 11–37, 1994.

[39] J. Geuvers, “Inductive and coinductive types with iteration and recur-
sion,” 1992.

[40] Y. A. Liu and S. D. Stoller, “From recursion to iteration: What are the
optimizations?” SIGPLAN Not., vol. 34, no. 11, p. 73–82, nov 1999.
[Online]. Available: https://doi.org/10.1145/328691.328700

[41] C. Hakert, K.-H. Chen, H. Schirmeier, L. Bauer, P. R. Genssler,
G. von der Br¨uggen, H. Amrouch, J. Henkel, and J.-J. Chen, “Software-
managed read and write wear-leveling for non-volatile main memory,”
2021.

[42] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: building customized
program analysis tools with dynamic instrumentation,” Acm sigplan
notices, vol. 40, no. 6, pp. 190–200, 2005.

Jifeng Wu received his B.S. degree in Software
Engineering from Wuhan University. He is currently
pursuing an M.S. degree in Computer Science at
the University of British Columbia. His research
interests include programming languages, program
analysis, and software engineering.

Wei Li received his B.S. degree in Printing En-
gineering from Wuhan University in 2017 and his
M.S. degree in Computer Science and Engineering
from Wuhan University in 2020. He is currently a
Ph.D. student supervised by Prof. Jingling Xue at the
School of Computer Science and Engineering, Uni-
versity of New South Wales. His research interests
include programming languages, program analysis,
and non-volatile memory.

15

Libing Wu received his Ph.D. degree from Wuhan
University in 2006. He is currently a Professor
at the School of Cyber Science and Engineering,
Wuhan University. He was a visiting scholar with the
Advanced Networking Lab, University of Kentucky
in 2011. He was a senior visiting fellow with State
University of New York in 2017. His research in-
terests include network security, Internet of Things,
machine learning, and data security.

Mengting Yuan received his Ph.D. degree from
Wuhan University in 2006. He is currently a pro-
fessor at the School of Computer Science, Wuhan
University. His research interests are programming
languages, compiler technology, and software engi-
neering.

Chun Jason Xue received his B.S. degree in Com-
puter Science and Engineering from the University
of Texas at Arlington in May 1997, and his M.S.
and Ph.D. degrees in Computer Science from the
University of Texas at Dallas in Dec 2002 and
May 2007, respectively. He is now a Professor in
the Department of Computer Science at the City
University of Hong Kong. His research interests
include memory and storage systems.

Jingling Xue (IEEE Fellow) is a Scientia Professor
in the School of Computer Science and Engineering
at UNSW Sydney, where he leads the Programming
Languages and Compilers group. He received his
B.Eng and M.Eng degrees in Computer Science and
Engineering from Tsinghua University in 1984 and
1987, respectively, and his Ph.D. degree in Computer
Science and Engineering from Edinburgh University
in 1992.

Jingling Xue’s research spans programming lan-
guages, compiler technology, and program analysis.

He has supervised 29 Ph.D. students to completion. He is interested in sharing
the outcomes of his research projects in the form of open-source tools such
as SVF3 and Qilin4. He has won many best/distinguished/test-of-time awards
at CGO, ECOOP, ICSE, ASE, and ISSTA.

Jingling Xue has served as a PC Chair/Co-Chair/Vice-Chair in 16 interna-
tional conferences, including LCTES’13, CC’18 and CGO’20, and as a PC
member in over 200 international conferences.

3https://svf-tools.github.io/SVF
4https://qilinpta.github.io/Qilin

Qingan Li received his B.S. and Ph.D. degrees in
Computer Science from Wuhan University in 2008
and 2013, respectively. He also received his Ph.D.
degree in computer science and engineering from
the City University of Hong Kong in 2014. He is
currently an Associate Professor at the School of
Computer Science, Wuhan University. His research
interests include program analysis, memory manage-
ment, and embedded systems.

