
Community Detection using Social Relations and
Trajectories

Jifeng Wu, Yuanyuan Zhu

June 2022

1 Abstract
Community detection is an essential task in social network analysis. However,
many friends on social networks are not close to one another in the real world.
In this paper, we explore utilizing trajectories consisting of user check-ins to
detect cohesive groups of users within social networks who frequently hang
out together. First, we propose an algorithm to efficiently calculate the spa-
tiotemporal similarity between two discrete trajectories in linear time. Then,
we propose a community detection algorithm to discover communities where
we jointly enforce social cohesion and trajectory similarity. Finally, we evalu-
ate our trajectory similarity algorithm and community detection algorithm on
two datasets, which validate the effectiveness and efficiency of our trajectory
similarity algorithm and offer valuable insights into our community detection
algorithm.

2 Introduction
Community detection, or cohesive subgraph search, is essential in social network
analysis. In a social network, cohesive subgraphs are subsets of users among
whom there are relatively strong, direct, intense, frequent, or positive ties [63],
and finding such subsets is one of the major concerns of social network analysis
with many applications.

However, social networks can be rife with casual acquaintances and zombie
friends who are only nominally “friends” on the online platform but are not close
with one another in the real world. However, through trajectory similarity, it is
possible to filter intimate relationships that frequently hang out together offline.

With the proliferation of GPS-enabled smartphones, location-based social
networks, where users can share their check-in locations with friends, have
rapidly developed. Given such check-ins, we can extract users’ trajectories
containing large amounts of spatiotemporal information and reflect the users’
moving patterns. Furthermore, by assessing the similarities between such tra-

1

jectories, we can discover communities where social cohesiveness and mutual
trajectory similarity are jointly enforced.

This is a flexible and robust paradigm of community detection with many
potential applications.

1. Social platforms could utilize users’ social relations and trajectories to pro-
vide grouping recommendations for travel. In this case, groups containing
users cohesive in terms of trajectory similarity coupled with relatively low
social distance are beneficial. This allows the users to expand their so-
cial circles, as users with similar trajectories have similar moving patterns
and are likely to have similar hobbies and ways of life, facilitating friend-
making.

2. In an epidemic, a virus could spread to acquaintances with frequent con-
tact. Thus, epidemic prevention and control workers can jointly use social
data and trajectory data to find probable cluster cases and take measures
to curb the spread of the virus.

3. This approach is also helpful in tracking down clandestine criminal gangs,
as such members are often acquaintances with each other and display
similar moving patterns when conducting criminal activity, facilitating
the need to utilize both data sources jointly.

Existing studies on trajectory mining consider trajectories to be either con-
tinuous or discrete. A continuous trajectory records an object’s continuous
movement with high fidelity, and interpolation on such a trajectory is feasible.
In contrast, a discrete trajectory only records a few places an object visits, ren-
dering interpolation infeasible. In our study, the trajectories extracted from
check-ins in location-based social networks are discrete, as users often check
in when they desire instead of periodically. Thus the polyline formed by con-
necting a user’s check-in points does not accurately reflect the user’s actual
movement. For example, a user’s ith check-in might be recorded at 8:00 AM
at home, while the user’s (i+1)th check-in might be recorded at 10:00 AM the
next day in a scenic spot. Although the two check-ins are adjacent, we only
know that the user was at home at 8:00 AM on the first day and the scenic
spot at 10:00 AM on the second day. It is not a reasonable estimate that the
user gradually moved from home to the scenic spot in a straight line during
this period. However, we can still assess the similarity between such discrete
trajectories through a trajectory similarity measure, which measures the overall
similarity between two trajectories.

Existing trajectory similarity measures usually calculate a distance matrix
containing the distances from each point in the first trajectory to each point
in the second trajectory. Afterward, they would find an alignment between the
points of the two trajectories or find a critical match pair minimizing or maxi-
mizing a given condition. In addition, Li et al. [35] proposed a linear-time, deep
representation learning-based trajectory similarity algorithm that models points

2

as “words” sampled from a predefined vocabulary of grid locations and trajec-
tories as “sentences” made up of these words. Unfortunately, finding a critical
match pair is sensitive to noise [56], while [35] requires a predefined vocabu-
lary of grid locations, so we choose an alignment-based approach to trajectory
similarity. However, existing alignment-based trajectory similarity measures
have a quadratic time complexity, which is infeasible for calculating pairwise
similarities between large numbers of long trajectories.

Furthermore, in our problem, temporal similarity is an essential aspect of
trajectory similarity. For example, even if two users’ trajectories visit similar
locations in similar orders, visiting them at different times still suggests that the
two users have different activity modes. Thus, we propose an alignment-based
trajectory similarity model considering both spatial and temporal similarity that
utilizes temporal constraints to support the efficient calculation of the similarity
between two discrete trajectories in linear time. In addition, we propose a new
community detection algorithm using social relations and trajectories to find
socially cohesive communities where we only retain social connections reinforced
with high trajectory similarity.

To sum up, the main contributions of this paper are as follows:

1. We propose a trajectory similarity model enabling us to calculate the
spatiotemporal similarity between two discrete trajectories in linear time.

2. We propose a community detection algorithm to discover communities
where only users who are friends on the social network and have similar
trajectories are connected.

3. We evaluate our trajectory similarity algorithm and community detection
algorithm on two datasets.

The rest of the paper is organized as follows. Section 3 presents related
work on community detection and trajectory similarity calculation. Section 4
introduces mathematical notations and definitions used throughout this paper
and formalizes our problem. Sections 5 and 6 explain in detail how we calculate
trajectory similarity and perform community detection respectively. Section 7
evaluates our proposed approaches with an experimental study on two public
datasets. Finally, Section 8 concludes.

3 Related Work
3.1 Community Detection
Finding communities, subgraphs in which nodes are densely connected with
each other, is an essential topic in graph mining with many applications, and
there is a wealth of research on this topic.

Classic community models, such as clique [40], k-core [52], and modularity-
based community models [27, 45, 12], often define communities based on edges,
the known relations between vertices. Of these models, the k-core model is of

3

particular interest. Being both efficient and effective, it has various extensions,
such as k-truss considering triangles instead of node degrees [19], s-core for
weighted graphs [20], D-core for directed graphs [26], and multilayer k-core for
multilayer graphs [24]. [42] presents a thorough survey of these models.

Some recent community detection research also considers both the social and
spatial constraints in finding communities. Modularity maximization-based al-
gorithms for community detection in spatial graphs were studied in [23, 17]. [69]
studies geosocial group queries with minimum acquaintance constraints, includ-
ing the problems of finding the maximum k-core in a given rectangle containing
a query vertex and finding the k-core with strictly (or no less than) c vertices
such that the longest distance from these vertices to q is minimized. The (k, r)-
core community model [68] uses pairwise similarity (distance) between each pair
of vertices to ensure the spatial cohesiveness of communities when computing
the maximum k-core or all maximal k-cores. Similarly, the RB-k-core model [62]
restricts a k-core model, ensuring social cohesiveness within a radius-bounded
circle. Furthermore, [66] and [31] proposed algorithms for detecting socially co-
hesive communities of users in location-based social networks that are spatially
cohesive based on the density of their locations. Beyond spatial coordinates, [34]
considered spatial cohesiveness on a road network, and models queries of com-
munities satisfying both social cohesiveness and spatial cohesiveness as skyline
queries, where each community cannot be dominated by any other in terms of
social cohesiveness and spatial cohesiveness.

3.2 Trajectory Similarity
A fundamental problem in trajectory data mining is determining how similar or
distinct two trajectories are. [56] presents a comprehensive survey of trajectory
distance measures, which divides these measures into two groups: (1) discrete
distance measures in which distance values are only calculated based on sample
points, such as Dynamic Time Warping [9], Longest Common Subsequence [49],
Edit Distance-based distance measures [16, 67], Spatiotemporal Linear Com-
bine Distance [53], Discrete Fréchet Distance [15], and Hausdorff Distance [21],
and (2) continuous distance measures in which distance values are calculated
based on both sample points and (interpolated) movement in-between, such
as Spatiotemporal Euclidean Distance [44] and Locality in-between Polylines
Distance [48].

Classic discrete distance measures can be further divided into two groups:
(1) those which find an alignment between the points of two trajectories and
calculate trajectory distance based on such alignment, and (2) those which find
a ”critical match pair” consisting of one point from each trajectory and use
the distance between these two points to represent trajectory distance. The
former includes Dynamic Time Warping, Longest Common Subsequence, Edit
Distance-based distance measures, and Spatiotemporal Linear Combine Dis-
tance, while the latter includes Hausdorff Distance and Discrete Fréchet Dis-
tance. Apart from these classic discrete distance measures, Li et al. [35] also
proposed a linear-time, deep representation learning-based discrete trajectory

4

Table 1: Mathematical notations used throughout this paper.

Notation Definition
G(V,E) a social network, an undirected graph with vertex set V and

edge set E
N(G, u) the neighbors of vertex u in graph G
d(G, u, v) the distance between two users, u and v, within the social

network G(V,E) (u, v ∈ V)
p(ϕ, λ, t) a check-in point on a trajectory, containing latitude ϕ, longi-

tude λ and timestamp t
T a trajectory, with T [i] being the ith point within the trajec-

tory
T a trajectory dataset, with T[u] being the trajectory of user u
s(T1, T2) the similarity between two trajectories, T1 and T2, under a

trajectory similarity measure s
NN(T, T, k) the k nearest neighbors of trajectory T in a set of trajectories

T

similarity algorithm that models points as “words” sampled from a predefined
vocabulary of grid locations and trajectories as “sentences” made up of these
words.

As for our problem, interpolation is not an option, and we resort to discrete
distance measures. In addition, finding a critical match pair is sensitive to noise
and is poorer at reflecting the overall similarity between all points. Further-
more, [35] limits us to calculate the similarities between trajectories visiting a
finite set of predefined locations and incurs a training cost. As a result, we take
inspiration from alignment-based distance measures in our study.

4 Preliminaries
Mathematical notations used throughout this paper are summarized in Table 1.

In terms of social cohesion, we adopt the k-core model [52].
k-core. Given an undirected graph G(V,E), the k-core G′(V ′, E′) of G

is a maximal subgraph of G such that each vertex is adjacent to at least k
other vertices. For a designated undirected graph G, given different values of
k, the corresponding k-cores form a series of hierarchical subgraphs such that if
k1 > k2, the k1-core of G is a denser subgraph of the k2-core of G.

In terms of trajectory similarity, there are two criteria we can use to identify
similar trajectories, k-nearest neighbors (k-NN), under which each trajectory is
considered to be similar to the k other trajectories with the highest similarity
value, as well as ϵ-nearest neighbors, under which pairs of trajectories having
similarity values above a threshold ϵ are considered to be similar [37]. However,
ϵ-nearest neighbors is very sensitive to the parameter ϵ [10, 11], and when used
to filter edges, it may result in networks with many disconnected parts under

5

an improper value of ϵ. Thus, k-nearest neighbors is a better choice.
However, k-nearest neighbors also has its own problems, such as being a

one-way relationship. Consider the situation in which a user is not a sociable
person, and his or her trajectory is not very similar to any other user’s trajec-
tory. In this situation, k-nearest neighbors would still consider the trajectories
of k other users to be similar, but should these k users be socially active, it
is likely that for each of these users, the k-nearest neighbors of his or her tra-
jectory does not include the aforementioned introverted user’s trajectory. To
overcome this limitation, mutuality can be enforced when adapting k-nearest
neighbors, such that two trajectories, T1 and T2, are considered similar only
if T1 is a k-nearest neighbor of T2, and that T2 is a k-nearest neighbor of T1.
In addition, directly calculating the k-nearest neighbors of a trajectory in the
entire trajectory dataset overlooks social relations. Thus, we only consider the
k-nearest neighbors of a user’s trajectory within the trajectories of the user’s
friends on the social network.

Our problem is formally stated as follows.
Problem Statement. Given (1) a social network G(V,E), (2) a trajectory

dataset T such that ∀u ∈ V, ∃!T [u] ∈ T, (3) a coreness requirement k, and (4) a
trajectory mutual nearest neighbor requirement m, find the maximal subgraph
G′(V ′, E′), such that (1) ∀(u, v) ∈ E′,T[u] ∈ NN(T[N(G, v)],T[v],m), T[v] ∈
NN(T[N(G, u)],T[u],m), and (2) G′(V ′, E′) is a k-core.

5 Trajectory Similarity
This section introduces our algorithm to calculate the similarity between two
trajectories.

As different users check in at different times, the check-in times of two trajec-
tories are usually asynchronous, facilitating a need to find an alignment between
the check-ins of two trajectories.

In many traditional alignment-based trajectory distance measures, such as
Dynamic Time Warping [9] and Spatiotemporal Linear Combine Distance [53],
this is done by calculating all pairwise distances and minimizing a cost function
to find the best alignment between the points of the two trajectories. This
implies a time complexity of O(mn), with m, n being the length of the two
trajectories, making them impracticable for handling many trajectories.

In our problem, temporal similarity is an essential aspect of trajectory sim-
ilarity. Even if two users’ trajectories visit similar locations in similar orders,
visiting them at different times still suggests that the two users have different
activity modes. Accordingly, we can implement this temporal requirement dur-
ing alignment finding. Given two trajectories T1 and T2, we first match each
point in T1 with the point in T2 closest in time, as depicted in Figure 1, before
matching each point in T2 with the point in T1 closest in time, as depicted in
Figure 2.

6

T1

T2

time

Figure 1: Matching each point in T1 with the point in T2 closest in time

T1

T2

time

Figure 2: Matching each point in T2 with the point in T1 closest in time

5.1 Finding Matching Points Between Trajectories
Matching each point in one trajectory with the point in the other closest in time
can be accomplished in linear time. To demonstrate this, we first prove that
given two trajectories T1 and T2, if the ith point in T1 matches the jth point in
T2, the index of the next point in T2, j′, that matches the (i+ 1)th point in T1

must satisfy j′ ≥ j.
Proof.
(1) If T2[j].t < T1[i].t, it must be the case that T2[j

′].t ≥ T2[j].t. Otherwise,
given T2[j

′].t < T2[j].t, it would be T2[j] instead of T2[j
′] that matches T1[i+1],

as T2[j] would be closer in time, as depicted in Figure 3.

T1
i i+1

T2
jj'

time

Figure 3: T2[j].t < T1[i].t, T2[j
′].t < T2[j].t is impossible

(2) If T1[i].t ≤ T2[j].t < T1[i + 1].t, it must be the case that T2[j
′].t ≥

T2[j].t. Otherwise, given T2[j
′].t < T2[j].t, it would be T2[j] instead of T2[j

′]
that matches T1[i+1], as T2[j] would be closer in time, as depicted in Figure 4.

(3) If T1[i + 1].t ≤ T2[j].t, it must be the case that T2[j
′].t ≥ T2[j].t. As

T2[j] matches T1[i], there is no other point in T2 whose timestamp t satisfies
2T1[i].t−T2[j].t < t < T2[j].t. Thus, given T2[j

′].t < T2[j].t, it must be the case
that T2[j

′].t ≤ 2T1[i].t−T2[j].t, such that it would be T2[j] instead of T2[j
′] that

matches T1[i+ 1], as T2[j] would be closer in time, as depicted in Figure 5.
According to (1)(2)(3), it is always the case that T2[j

′].t ≥ T2[j].t. Thus,
j′ ≥ j.

Furthermore, given a trajectory T , a beginning index b, an ending index
e, and a target time t, as T [i].t monotonically increases with the increase of
i ∈ {b, b + 1 . . . , e}, |T [i].t − t| either monotonically increases, monotonically
decreases, or monotonically decreases before monotonically increasing, depend-
ing on the value of t. As a result, we can find the index of the next point in
T2, j′, that matches the (i + 1)th point in T1 using Algorithm 1, which finds

7

T1
i i+1

T2
jj'

time

Figure 4: T1[i].t ≤ T2[j].t < T1[i+ 1].t, T2[j
′].t < T2[j].t is impossible

T1
i i+1

T2
jj'

time

Figure 5: T1[i+ 1].t ≤ T2[j].t, T2[j
′].t < T2[j].t is impossible

argmin
i
|T [i].t− t|, i ∈ {b, b+ 1, . . . , e}.

Algorithm 1: ArgminIndex
Input: trajectory T , beginning index b, ending index e, target time t
Output: argmin

i
|T [i].t− t|, i ∈ {b, b+ 1 . . . , e}

1 begin
2 i← b;
3 if i = e then
4 return i;
5 |∆t| ← |T [i].t− t|;
6 while true do
7 i′ ← i+ 1;
8 if i′ = e then
9 return i;

10 |∆t′| ← |T [i′].t− t|;
11 if |∆t′| > |∆t| then
12 return i;
13 I ← i′; |∆t| ← |∆t′|;

With this algorithm, given two trajectories T1 and T2, containing m and n
points respectively, we can match each point in T1 with the point in T2 closest
in time, as shown in Algorithm 2.

In Algorithm 2, the loop is iterated m times, once for each point in T1, while
all calls to ArgminIndex may result in T2 being fully traversed as well once the
loop finishes. Thus, the total time complexity of Algorithm 2 is O(m+ n).

8

Algorithm 2: MatchingIndices
Input: trajectory T1 of length m, trajectory T2 of length n
Output: array J , containing the indices of points in T2 closest in time

to points in T1

1 begin
2 initialize J to an empty array of length m;
3 j ← 1;
4 for i ∈ {1, 2, . . . ,m} do
5 // Find the index of the point in T2 closest in time to T1[i]

j ← ArgminIndex(T2, j, n, T1[i].t);
6 J [i]← j;
7 return J ;

5.2 Similarity Between Two Matching Points
The similarity between two matching points can be described from spatial and
temporal aspects.

For the spatial aspect, we calculate the geographical distance d between the
two points and assume that spatial similarity decays exponentially over distance,
with a spatial time constant δ governing decay speed. Thus, if the geographical
distance between two points is d, we use e−

d
δ to represent their spatial similarity.

For the temporal aspect, we also assume that temporal similarity decays
exponentially over time, with a temporal time constant τ governing decay speed.
In other words, if there are two points with a time delta of ∆t, we use e

∆t
τ to

represent their temporal similarity.
To combine the space aspect and the time aspect, we can directly multiply

the spatial similarity and the temporal similarity together. This is based on
the natural assumption that with time fixed, the similarity between two points
decreases with distance and that with distance fixed, the similarity between two
points drops if they become further apart in time.

Formally, given the parameters δ, τ , and having calculated d, ∆t, the simi-
larity s between two check-ins is calculated as follows:

s = e−(d
δ+

∆t
τ) (1)

5.3 Overall Similarity Between Two Trajectories
Having proposed a model for the similarity between two matching points, we
introduce a procedure to calculate the overall similarity between two trajecto-
ries.

Given two trajectories T1 and T2, matching each point in T1 with the point
in T2 closest in time and matching each point in T2 with the point in T1 closest
in time may result in different results, as depicted in Figures 1 and 2. Thus, we

9

can calculate two one-way similarities, from T1 to T2 and from T2 to T1, and
average them to obtain the overall bidirectional similarity between T1 and T2.

The aforementioned one-way similarities can be implemented by first find-
ing the matching points before calculating the similarity of each two matching
points averaged over time, as described in Algorithm 3. Finally, we take the
minimum two one-way overall similarities in Algorithm 4 to calculate the overall
bidirectional similarity between T1 and T2.

Algorithm 3: OneWaySimilarity
Input: trajectory T1 of length m, trajectory T2 of length n, parameters

δ and τ
Output: the one-way similarity from T1 to T2

1 begin
2 TotalT ime← 0; TotalArea← 0;
3 J ←MatchingIndices(T1, T2);
4 t1 ← T1[1].t; s1 ← similarity(T1[1], T2[J [1]]);
5 for i ∈ {2, 3, . . . ,m− 1} do
6 t2 ← T1[i].t; s2 ← similarity(T1[i], T2[J [i]]);
7 add t2 − t1 to TotalT ime;
8 add 1

2 (s1 + s2)(t2 − t1) to TotalArea;
9 t1 ← t2; s1 ← s2;

10 return TotalArea
TotalT ime ;

Algorithm 4: OverallSimilarity
Input: source trajectory T1 of length m, target trajectory T2 of length

n, parameters δ and τ
Output: the overall similarity between T1 and T2

1 begin
2 s12 = OneWaySimilarity(T1, T2, δ, τ);
3 s21 = OneWaySimilarity(T2, T1, δ, τ);
4 return min{s12, s21};

6 Community Detection
With social network analysis addressing networks of rapidly-increasing size, it
is critical to identify community detection methods that are not only effective
but also efficient [19]. k-core decomposition, proposed by Seidman [52], presents
itself as a viable solution.

The k-core is a maximal subgraph in which each member is adjacent to at
least k other members as a cohesive community. It is a time-tested concept that

10

been applied extensively to real-word graphs in areas as diverse as social net-
work analysis [33, 58], the study of Internet topology [2, 14], complex network
modeling [8, 29, 60], anomaly detection [54, 55], influential spreader identifica-
tion [13, 70, 47, 36, 38, 39, 55], graph similarity [46], large-scale network visual-
ization [6, 5, 2, 1, 4], graph embedding [51], keyword extraction [50, 57, 43], net-
works of protein interaction [3, 65, 41, 30, 22], and neuroscience [28, 59, 64, 32].
A comprehensive review of its applications can be found in [42].

Besides the fact that it provides an effective manner for finding hierarchical
structures of increasing cohesiveness with increasing k within a graph, core de-
composition also stands out from more complex and computationally intensive
algorithmic techniques with its linear, O(|V | + |E|) time complexity, accom-
plished using the bin sorting-based algorithm [7], which calculates the coreness
of each vertex. The coreness of a vertex v is the maximum value of k such that
v is contained in a k-core.

However, directly reducing community detection to finding the k-core within
a graph has its caveats, as rather than being sets of high cohesion, Seidman
characterizes k-cores as “seedbeds, within which cohesive subsets can precipitate
out.”[52] Furthermore, in our problem, we must consider trajectory similarity in
tandem with social cohesion. Thus, we adopt a community detection scheme of
selecting edges based on trajectory similarity before finding the k-core within
the selected edges to enforce social cohesiveness.

Specifically, each edge (u, v) is retained if T[u] ∈ NN(T[N(G, v)],T[v],m)
and T[v] ∈ NN(T[N(G, u)],T[u],m), otherwise, it is filtered out. Such a pro-
cess can be conducted on the entire graph using the beam search-based algo-
rithm in Algorithm 5.

In this algorithm, every vertex of the social network is visited in a beam
search manner and edges (u, v) for which one of T[u] ∈ NN(T[N(G, v)],T[v],m)
and T[v] ∈ NN(T[N(G, u)],T[u],m) is checked is stored in SinglyChecked.
At each vertex u (lines 10-32), we examine the m neighboring vertices with
trajectories most similar to T[u]. For each such vertex v (lines 16-31), T[v] ∈
NN(T[N(G, u)],T[u],m)} is verified. Thus, if T[u] ∈ NN(T[N(G, v)],T[v],m)
has been verified as well (implying (u, v) ∈ SinglyChecked, lines 17-19), the
edge (u, v) is moved into Selected (line 18). There are two cases if it still needs
to be verified (lines 20-30).

1. Whether or not T[u] ∈ NN(T[N(G, v)],T[v],m) is yet to be confirmed.
In this case, (u, v) is added to SinglyChecked. If v is in the same layer as
u, we will visit v later, and if it is not, we will add it to Next to schedule
it to be visited later.

2. T[u] ∈ NN(T[N(G, v)],T[v],m) has been confirmed to be false, implying
v /∈ Remaining ∧ (u, v) /∈ SinglyChecked. In this case, (u, v) is filtered
out, and nothing is done.

This algorithm requires calculating the trajectory similarities correspond-
ing to each edge within the social network, which incurs a time complexity of

11

Algorithm 5: SelectEdges
Input: social network G(V,E), trajectory dataset T, δ, τ , m
Output: set of selected edges Selected

1 begin
2 initialize Selected and SinglyChecked to ∅;
3 initialize Similarities to an empty map;
4 Remaining ← V ;
5 while Remaining ̸= ∅ do
6 remove a vertex v from Remaining;
7 Current← {v};
8 while Current ̸= ∅ do
9 Next← ∅;

10 for u ∈ Current do
11 for v ∈ N(G, u) do
12 if (u, v) /∈ Similarities then
13 Similarities[(u, v)]←

OverallSimilarity(T[u],T[v], δ, τ);

14 for v ∈ {v|T[v] ∈ NN(T[N(G, u)],T[u],m)} do
15 if (u, v) ∈ SinglyChecked then
16 move (u, v) from SinglyChecked to Selected;
17 else
18 if v ∈ Current then
19 insert (u, v) to SinglyChecked;
20 else
21 if v ∈ Remaining then
22 insert (u, v) to SinglyChecked;
23 insert v to Next;

24 Remaining ← Remaining − Current;
25 Current← Next;

26 return Selected;

12

O(L|E|), with L being the average trajectory length. Each vertex of the so-
cial network is visited in a beam search manner, requiring O(|V | + |E|) time,
and for each vertex u, {v|T[v] ∈ NN(T[N(G, u)],T[u],m)} is calculated, which
has an O(deg(u) logm) cost. As

∑
u∈V deg(u) logm = 2|E| logm, the total

time complexity of Algorithm 5 is O(L|E|) + O(|V | + |E|) + O(2|E| logm) =
O(|V |+ (L+ 2 logm)|E|).

Finally, the entire community detection procedure is encapsulated in Algo-
rithm 6. The time complexity is also O(|V |+ (L+ 2 logm)|E|).

Algorithm 6: CommunityDetection
Input: social network G(V,E), trajectory dataset T, δ, τ , m, k
Output: the community, G′(V ′, E′)

1 begin
2 E′ ← SelectEdges(G,T, δ, τ,m);
3 replace edge set of G, E, with E′;
4 Corenesses← CalculateCorenesses(G);
5 calculate the subgraph of G, G′(V ′, E′), such that

v ∈ V ′, Corenesses[v] > k;
6 return G′;

7 Experimental Study
7.1 Datasets
We conduct experiments on two public datasets.

Brightkite [18]. The Brightkite dataset including a friendship network
and check-in data was generated worldwide from April 2008 to October 2010.
We filter out those users with fewer than 10 check-in points and those check-in
points with fewer than 10 users. The filtered friendship network comprises 1,849
users and 13,065 friendships, while the filtered check-in data contains 257,179
check-ins, with an average of 76 check-ins per trajectory.

Gowalla [18]. The Gowalla dataset including a friendship network and
check-in data was generated worldwide from February 2009 to October 2010.
We filter out those users with fewer than 15 check-in points and those check-
in points with fewer than 10 users. The filtered friendship network comprises
18,737 users and 86,985 friendships, while the filtered check-in data contains
1,278,274 check-ins, with an average of 48 check-ins per trajectory.

7.2 Experimental Setup
In this paper, we have proposed a trajectory similarity algorithm and a com-
munity detection algorithm. They are implemented in C++ while the data
analysis is conducted in Python. The experiments were conducted on an 8-core,

13

64-bit Linux server with 32 GB of RAM. In all experiments, we use the spatial
time constant δ = 1000m and the temporal time constant τ = 3600s in our
trajectory similarity algorithm. All source code, including our algorithms and
our data analysis code, is available on GitHub1.

7.3 Case Study
We conducted a case study on discovering communities where social cohesiveness
and mutual trajectory similarity are both enforced. We performed community
detection on the Brightkite dataset with k = 3 and m = 5. Figure 6 presents the
detected communities, a subgraph of the 3-core of the Brightkite social network,
while Figures 7 and 8 present the locations and times of the check-ins within
each user’s trajectory for each connected component.

1

3

7 123 124

11

13

51

8692

67916

1428

1918

1951

2046

1538

2371

6123

13640

1876

2902 10752

10966

10972

6604

10781

2001

11765

22911

22913

14484

19406

34820

45032

27383

27387

27394 27397

27399 27404

Figure 6: The Detected Communities
1https://github.com/abbaswu/community-detection-using-social-relations-and-

trajectories

14

(a) 1 (b) 2

(c) 3 (d) 4

(e) 5 (f) 6

(g) 7 (h) 8

Figure 7: Check-in Locations

15

(a) 1 (b) 2

(c) 3 (d) 4

(e) 5 (f) 6

(g) 7 (h) 8

Figure 8: Check-in Times

Figure 6 shows that our community detection algorithm detects commu-
nities with socially cohesive connected components. Furthermore, Figures 7
and 8 present the spatiotemporal cohesiveness of the trajectories of the con-
nected component’s users, such as checking in at similar locations (Figure 7)
and at similar times (Figure 8). Furthermore, though all users are in the 3-core
of the Brightkite social network, we can observe that users in different con-
nected components exhibit markedly different mobility patterns, as suggested
by the geographically distinct check-in locations and separated check-in times.
This showcases our community detection algorithm’s ability to detect communi-
ties with both cohesiveness and trajectory similarity, which is useful in scenarios
that require filtering intimate relationships who do frequently hang out together
offline from a large social network, such as grouping recommendations for travel
based on both social acquaintances and similar moving patterns, detecting prob-
able cluster cases in epidemics, and tracking down clandestine criminal gangs.

16

7.3.1 Evaluation of Our Trajectory Similarity Algorithm

We have proposed an algorithm that can calculate the spatiotemporal similarity
between two discrete trajectories in linear time. Thus, we shall evaluate our
trajectory similarity algorithm from the following two aspects:

1. Speed. We compare the running time of our algorithm with those of other
spatiotemporal discrete trajectory similarity algorithms.

2. Correlation between matching point spatiotemporal distance and trajec-
tory similarity. For each pair of trajectories involved in trajectory simi-
larity calculation, we calculate the average spatial and temporal distance
between matching points detected by our algorithm or other spatiotempo-
ral discrete trajectory similarity algorithms. We then compute the Spear-
man’s rank correlation coefficient [25] between matching point spatiotem-
poral distance and trajectory similarity for all pairs of trajectories under
different trajectory similarity algorithms. The closer to -1 the correla-
tions are, the better the trajectory similarity algorithm encapsulates both
spatial and temporal similarity within trajectory similarity.

We perform calculations on our datasets using our algorithm and two other
discrete spatiotemporal trajectory similarity algorithms presented in [56], namely
Spatiotemporal Longest Common Subsequence (STLCSS) [61], and Spatiotem-
poral Linear Combine (STLC) [53].

• For STLCSS, we set its parameters, ε and ∆, which control how far in
space and time two trajectories can go in order to match a given point
from one trajectory to a point in another trajectory, to be multiples of our
spatial and temporal time constant (e.g. ε = kδ,∆ = kτ, k ∈ {1, 2, . . . }).

• For STLC, we set its parameter, λ ∈ [0, 1], which controls the rela-
tive importance of the spatial and temporal similarities, to the values
{0.2, 0.4, 0.6, 0.8}.

7.3.2 Evaluation of Our Community Detection Algorithm

Compared to traditional community detection algorithms that only consider
known social relations between users, our community detection algorithm uti-
lizes both social relations and trajectories extracted from user check-ins. Con-
sidering that our goal is to discover communities where social cohesiveness and
mutual trajectory similarity are both enforced out of casual acquaintances and
zombie friends who are not actually close with one another in the real world,
we evaluate our community detection algorithm from the following aspects.

1. Size of the detected communities. We measure the number of users in the
detected communities under different values of k and m.

2. Social cohesiveness of the detected communities. We measure the dis-
tances between two users within each connected component of the detected
communities under different values of k and m.

17

3. Spatial cohesiveness of the detected communities. We measure the simi-
larities between two users’ trajectories within each connected component
of the detected communities under different values of k and m.

4. The runtimes of our community detection algorithm under different values
of k and m.

7.4 Experimental Results
7.4.1 Evaluation of Our Trajectory Similarity Algorithm

Speed The average time required to calculate the similarity between a pair of
trajectories using our trajectory similarity algorithm, OverallSimilarity, as well
as STLCSS and STLC, on the Brightkite and Gowalla datasets, are presented
in Table 2.

Besides being able to calculate the similarity between a pair of trajectories
much faster than STLCSS and especially STLC, our algorithm, being a linear-
time algorithm, also outperforms STLCSS and STLC by virtue of scaling well
with increased trajectory length, as evidenced by the change in average tra-
jectory similarity calculation time from the Gowalla dataset to the Brightkite
dataset.

Table 2: Average Trajectory Similarity Calculation Time (us)

Algorithm Brightkite, mean length 76 Gowalla, mean length 48

OverallSimilarity 30.79 17.14
STLCSS 109.78 36.52
STLC 6,331.37 1,968.69

Correlation between matching point spatiotemporal distance and tra-
jectory similarity The Spearman’s rank correlation coefficients between match-
ing point spatiotemporal distance and trajectory similarity under our trajectory
similarity algorithm, OverallSimilarity, as well as STLCSS and STLC, on the
Brightkite and Gowalla datastes, are presented in Tables 3.

Compared with STLCSS and STLC, our trajectory similarity algorithm,
OverallSimilarity, consistently achieves correlation coefficients between match-
ing point spatiotemporal distance and trajectory similarity closer to -1. As a
result, our trajectory similarity algorithm better encapsulates both spatial and
temporal similarity within trajectory similarity.

7.4.2 Evaluation of Our Community Detection Algorithm

Size of the Detected Communities The number of users in the detected
communities under different values of k and m is depicted in Figure 9.

18

Table 3: Correlations between Spatial and Temporal Distance of Matching
Points and Trajectory Similarity

Algorithm Brightkite Gowalla

OverallSimilarity -0.1986, -0.3871 -0.5112, -0.4084
STLCSS, k=1 0.1959, -0.1066 -0.1350, -0.1559
STLCSS, k=2 0.1550, -0.0926 -0.2162, -0.1112
STLCSS, k=3 0.0861, -0.0975 -0.1991, -0.0775
STLCSS, k=4 0.0550, -0.0927 -0.1800, -0.0632
STLCSS, k=5 0.0360, -0.0862 -0.1584, -0.0566
STLC, λ = 0.1 -0.0527, -0.1680 -0.4789, -0.1198
STLC, λ = 0.2 -0.0525, -0.1678 -0.4792, -0.1193
STLC, λ = 0.3 -0.0524, -0.1677 -0.4793, -0.1191
STLC, λ = 0.4 -0.0524, -0.1676 -0.4793, -0.1190
STLC, λ = 0.5 -0.0523, -0.1676 -0.4793, -0.1189
STLC, λ = 0.6 -0.0523, -0.1676 -0.4794, -0.1188
STLC, λ = 0.7 -0.0523, -0.1676 -0.4794, -0.1188
STLC, λ = 0.8 -0.0523, -0.1676 -0.4794, -0.1188
STLC, λ = 0.9 -0.0523, -0.1676 -0.4794, -0.1187

4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0 inf
0

500

1000

26 107
373

566
718 815 872 905 943 980 999 10251040

1212

(a) Brightkite, k = 3

4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0 inf
0

5000

10000

382
1701

4533
5808663571637532781779898131823983278432

10054

(b) Gowalla, k = 3

8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0 inf
0

500

1000

16 46 108
210

301
468

562 635 666 699 717

954

(c) Brightkite, k = 5

6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0 inf
0

2000

4000

6000

7 91 291 545 1110
2293

2887
3479 3801 4131 4327 4492

6337

(d) Gowalla, k = 5

10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0 inf
0

250

500

750

9 9 26 44
136 171 199

299 324
404

771

(e) Brightkite, k = 7

10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0 inf
0

2000

4000

19 44 88 144 250 388
865

1270
1738 1970

4304

(f) Gowalla, k = 7

18.0 20.0 22.0 24.0 26.0 28.0 inf
0

200

400

600

12 16 66
138 153 177

602

(g) Brightkite, k = 9

14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0 inf
0

1000

2000

3000

11 11 23 87 96 192 242 322

3130

(h) Gowalla, k = 9

Figure 9: The Number of Users in the Detected Communities

Under all values of k, our detected community only includes a fraction of the
users when compared with the k-core. Thus, compared with k-core “seedbeds”,
our community detection algorithm can effectively find small subsets of users
through the lens of trajectory similarity.

19

In our community detection algorithm, the set of edges selected for coreness
calculation depends on the value of m, with more edges in the edge set with a
larger value of m. Thus, given a value of k, the size of the detected community
increases with m. Furthermore, given a value of m, the size of the community
shrinks with an increasing value of k as a higher coreness requirement filters
more users from the selected edge set.

Social Cohesiveness of the Detected Communities The distances be-
tween two users within each connected component of the detected communities
under different values of k and m are depicted in Figure 10.

Given a value of k, there is a general trend for social cohesiveness measured
by the median distance between two users within each connected component of
the detected communities to first decrease (indicated by an increasing median
distance) when m < 3k, before slowly reincreasing after m ≥ 3k. This is because
the vast majority of users in the social network have relatively few connections,
while a few users have a huge number of connections. Increasing the value of m,
more and more edges that function to tie the former into the selected edge set
are retained, and as a result, they are more likely to be in the k-core of the edge
set, which enlarges the community detected and causes the median distance to
increase. However, when m becomes sufficiently large, many peripheral users
have already been secured into the edge set, and the increase in m mainly leads
to tighter interconnections within the edge set. As a result, the enlargement of
the k-core slows, while the k-core becomes dense, leading to reducing median
distances.

In addition, given a value of m, with the increase of k, not only does the
detected community become smaller with fewer users within the selected edge set
satisfying the coreness requirement, but the users that do satisfy the coreness
requirement are also more closely knit. These two factors lead to a reduced
median distance, which signifies an increased social cohesiveness.

20

4 6 8 10 12 14 16 18 20 22 24 26 28 inf0

10

20

(a) Brightkite, k = 3

4 6 8 10 12 14 16 18 20 22 24 26 28 inf0

10

20

(b) Gowalla, k = 3

8 10 12 14 16 18 20 22 24 26 28 inf

5

10

(c) Brightkite, k = 5

6 8 10 12 14 16 18 20 22 24 26 28 inf0

10

20

(d) Gowalla, k = 5

10 12 14 16 18 20 22 24 26 28 inf
2.5
5.0
7.5

(e) Brightkite, k = 7

10 12 14 16 18 20 22 24 26 28 inf

5

10

(f) Gowalla, k = 7

18 20 22 24 26 28 inf

2

4

(g) Brightkite, k = 9

14 16 18 20 22 24 26 28 inf

5
10
15

(h) Gowalla, k = 9

Figure 10: The Distances Between Two Users Within Each Connected Compo-
nent of the Detected Communities Under Different Values of k and m

Spatial Cohesiveness of the Detected Communities The similarities
between two users’ trajectories within each connected component of the detected
communities under different values of k and m are depicted in Figure 11.

21

4 6 8 10 12 14 16 18 20 22 24 26 28 inf
0.0

0.2

(a) Brightkite, k = 3

4 6 8 10 12 14 16 18 20 22 24 26 28 inf
0.0

0.2

0.4

(b) Gowalla, k = 3

8 10 12 14 16 18 20 22 24 26 28 inf
0.0

0.2

(c) Brightkite, k = 5

6 8 10 12 14 16 18 20 22 24 26 28 inf
0.0

0.2

(d) Gowalla, k = 5

10 12 14 16 18 20 22 24 26 28 inf
0.0

0.1

(e) Brightkite, k = 7

10 12 14 16 18 20 22 24 26 28 inf
0.0

0.2

(f) Gowalla, k = 7

18 20 22 24 26 28 inf
0.0

0.1

0.2

(g) Brightkite, k = 9

14 16 18 20 22 24 26 28 inf
0.0

0.1

0.2

(h) Gowalla, k = 9

Figure 11: The Similarities Between Two Users’ Trajectories Within Each Con-
nected Component of the Detected Communities Under Different Values of k
and m

Given a value of k, we can observe that the median similarities between two
users’ trajectories increases to a maxima around m = 1.75k, before decreasing
to insignificant around m = 3k.

Given a value of k, under low values of m (m < 1.75k), only edges corre-
sponding to high localized trajectory similarity are retained in the selected edge
set. Although the resulting edge set is large, containing almost all users in the
social network, it is sparse, with only a few densely connected regions resulting
from a high mutual degree of trajectory similarity, as depicted on the left in
Figure 12. However, not all users within these regions make it to the detected
community, as some users may not satisfy coreness requirements. When the
value of m is slightly raised, more users from the aforementioned dense regions
would appear in the detected community owning to newly added edges in the
edge set. Although these edges correspond to slightly lower trajectory similar-
ity values, the high degree of interconnectivity within a connected component
(which results from it coming from a densely connected region in the selected
edge set) still guarantees spatial cohesiveness among its users, as depicted in
the middle in Figure 13. Furthermore, the increase in the size and number of
such connected components would mean that there would be more pairwise tra-
jectory similarities taken into consideration. Such an increase would allow the
median pairwise trajectory similarity to increase.

22

However, when the value of m is further raised (m > 1.75k), edges newly
added to the edge set would not only enlarge and enhance original dense regions
but also bridge them, resulting in larger connected components that are not
cohesive in terms of trajectory similarity, as depicted on the right in Figure
13. At this point, the abundance of trajectory pairs with low similarity would
quickly drag down the median pairwise trajectory similarity, resulting in what
we see in Figure 11.

(a) m = 4 (b) m = 8

Figure 12: Filtered Edge Sets of the Brightkite Dataset

(a) m = 4 (b) m = 6 (c) m = 8

Figure 13: Communities Detected from the Brightkite Dataset, k = 3

Runtimes of Our Community Detection Algorithm The runtimes of our
community detection algorithm under different values of k and m are plotted in
Figure 14.

23

5 10 15 20 250.0

0.1

0.2

0.3

0.4

0.5

k = 3
k = 5
k = 7
k = 9

(a) Brightkite

5 10 15 20 250.0

0.5

1.0

1.5

2.0

k = 3
k = 5
k = 7
k = 9

(b) Gowalla

Figure 14: Runtimes (in seconds) of Our Community Detection Algorithm

The effects of k and m are limited on the runtimes of our community de-
tection algorithm. This is consistent with our analyzed time complexity of
O(|V | + (L + 2 logm)|E|), where k is not a factor and the logarithm of m is
usually negligible when compared with |V |, |E|, and L.

Furthermore, the Brightkite dataset boasts |V1| = 1849, |E1| = 13065, L1 =
76, while the Gowalla dataset boasts |V2| = 18737, |E2| = 86985, L2 = 48.
|V1|+L1|E1|
|V2|+L2|E2| is close to the ratio of the median community detection time on
the Brightkite and Gowalla datasets, 0.42

1.75 , which verifies our analyzed time
complexity.

Being linear in terms of each of |V |, |E|, and L, the time complexity of our
community detection algorithm, O(|V |+(L+2 logm)|E|), allows our algorithm
to scale efficiently to large graphs and long trajectories.

Summary From the aforementioned experiment results, we can summarize
the following rules of thumb for using our community detection algorithm: given
a value of k, we can detect small, close-knit communities with both social cohe-
siveness and mutual trajectory similarity when m < 3k, with the median sim-
ilarities between two users’ trajectories peaking at around m = 1.75k. Larger
values of m increase the community size but reduce social cohesiveness and
trajectory similarity.

8 Conclusions
In this paper, we propose a community detection algorithm utilizing social rela-
tions and trajectories consisting of user check-in points to discover communities
within social networks with both social cohesiveness and mutual trajectory sim-
ilarity. To efficiently accomplish this goal, we propose an algorithm that can
calculate the spatiotemporal similarity between two discrete trajectories in lin-
ear time and an efficient community detection algorithm that selects an edge
set based on trajectory similarity before running k-core detection. Evaluat-
ing our trajectory similarity algorithm and community detection algorithm on
two real-world datasets, we conclude that our trajectory similarity algorithm is
both efficient and effective when compared with other discrete spatiotemporal
trajectory similarity algorithms, and we uncover how and why each parameter
affects the results of community detection. In the future, we plan to further

24

improve the efficiency of our community detection algorithm, as well as study
the problem of community search utilizing social relations and trajectories.

References
[1] J Alvarez-Hamelin, Luca Dall’Asta, Alain Barrat, and Alessandro Vespig-

nani. Large scale networks fingerprinting and visualization using the k-
core decomposition. Advances in neural information processing systems,
18, 2005.

[2] José Ignacio Alvarez-Hamelin, Luca Dall’Asta, Alain Barrat, and Alessan-
dro Vespignani. K-core decomposition of internet graphs: hierarchies, self-
similarity and measurement biases. arXiv preprint cs/0511007, 2005.

[3] Gary D Bader and Christopher WV Hogue. An automated method for
finding molecular complexes in large protein interaction networks. BMC
bioinformatics, 4(1):1–27, 2003.

[4] Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. Gephi: an
open source software for exploring and manipulating networks. In Pro-
ceedings of the international AAAI conference on web and social media,
volume 3, pages 361–362, 2009.

[5] Vladimir Batagelj and Andrej Mrvar. Pajek—analysis and visualization of
large networks. In Graph drawing software, pages 77–103. Springer, 2004.

[6] Vladimir Batagelj, Andrej Mrvar, and Matjaž Zaveršnik. Partitioning ap-
proach to visualization of large graphs. In International Symposium on
Graph Drawing, pages 90–97. Springer, 1999.

[7] Vladimir Batagelj and Matjaz Zaversnik. An o (m) algorithm for cores
decomposition of networks. arXiv preprint cs/0310049, 2003.

[8] Michael Baur, Marco Gaertler, Robert Görke, Marcus Krug, and Dorothea
Wagner. Generating graphs with predefined k-core structure. In Proceedings
of the European Conference of Complex Systems, volume 1166, 2007.

[9] Donald J Berndt and James Clifford. Using dynamic time warping to find
patterns in time series. In KDD workshop, volume 10, pages 359–370.
Seattle, WA, USA:, 1994.

[10] Lilian Berton and Alneu de Andrade Lopes. Graph construction for semi-
supervised learning. In Twenty-Fourth International Joint Conference on
Artificial Intelligence, 2015.

[11] Lilian Berton, Alneu de Andrade Lopes, and Didier A Vega-Oliveros. A
comparison of graph construction methods for semi-supervised learning. In
2018 International Joint Conference on Neural Networks (IJCNN), pages
1–8. IEEE, 2018.

25

[12] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne
Lefebvre. Fast unfolding of communities in large networks. Journal of
statistical mechanics: theory and experiment, 2008(10):P10008, 2008.

[13] Phil Brown and Junlan Feng. Measuring user influence on twitter using
modified k-shell decomposition. In Proceedings of the International AAAI
Conference on Web and Social Media, volume 5, pages 18–23, 2011.

[14] Shai Carmi, Shlomo Havlin, Scott Kirkpatrick, Yuval Shavitt, and Eran
Shir. A model of internet topology using k-shell decomposition. Proceedings
of the National Academy of Sciences, 104(27):11150–11154, 2007.

[15] Jinyang Chen, Rangding Wang, Liangxu Liu, and Jiatao Song. Clustering
of trajectories based on hausdorff distance. In 2011 International Confer-
ence on Electronics, Communications and Control (ICECC), pages 1940–
1944. IEEE, 2011.

[16] Lei Chen, M Tamer Özsu, and Vincent Oria. Robust and fast similarity
search for moving object trajectories. In Proceedings of the 2005 ACM
SIGMOD international conference on Management of data, pages 491–502,
2005.

[17] Yu Chen, Jun Xu, and Minzheng Xu. Finding community structure in spa-
tially constrained complex networks. International Journal of Geographical
Information Science, 29(6):889–911, 2015.

[18] Eunjoon Cho, Seth A Myers, and Jure Leskovec. Friendship and mobility:
user movement in location-based social networks. In Proceedings of the 17th
ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 1082–1090, 2011.

[19] Jonathan Cohen. Trusses: Cohesive subgraphs for social network analysis.
National security agency technical report, 16(3.1), 2008.

[20] Marius Eidsaa and Eivind Almaas. S-core network decomposition: A gen-
eralization of k-core analysis to weighted networks. Physical Review E,
88(6):062819, 2013.

[21] Thomas Eiter and Heikki Mannila. Computing discrete fréchet distance.
Technical report, Citeseer, 1994.

[22] Arnold I Emerson, Simeon Andrews, Ikhlak Ahmed, Thasni KA Azis, and
Joel A Malek. K-core decomposition of a protein domain co-occurrence
network reveals lower cancer mutation rates for interior cores. Journal of
clinical bioinformatics, 5(1):1–11, 2015.

[23] Paul Expert, Tim S Evans, Vincent D Blondel, and Renaud Lambiotte. Un-
covering space-independent communities in spatial networks. Proceedings
of the National Academy of Sciences, 108(19):7663–7668, 2011.

26

[24] Edoardo Galimberti, Francesco Bonchi, and Francesco Gullo. Core decom-
position and densest subgraph in multilayer networks. In Proceedings of
the 2017 ACM on Conference on Information and Knowledge Management,
pages 1807–1816, 2017.

[25] Thomas D Gauthier. Detecting trends using spearman’s rank correlation
coefficient. Environmental forensics, 2(4):359–362, 2001.

[26] Christos Giatsidis, Dimitrios M Thilikos, and Michalis Vazirgiannis. D-
cores: measuring collaboration of directed graphs based on degeneracy.
Knowledge and information systems, 35(2):311–343, 2013.

[27] Michelle Girvan and Mark EJ Newman. Community structure in social
and biological networks. Proceedings of the national academy of sciences,
99(12):7821–7826, 2002.

[28] Patric Hagmann, Leila Cammoun, Xavier Gigandet, Reto Meuli, Christo-
pher J Honey, Van J Wedeen, and Olaf Sporns. Mapping the structural
core of human cerebral cortex. PLoS biology, 6(7):e159, 2008.

[29] Laurent Hébert-Dufresne, Antoine Allard, Jean-Gabriel Young, and Louis J
Dubé. Percolation on random networks with arbitrary k-core structure.
Physical Review E, 88(6):062820, 2013.

[30] Arnold Emerson Isaac and Sitabhra Sinha. Analysis of core–periphery
organization in protein contact networks reveals groups of structurally and
functionally critical residues. Journal of biosciences, 40(4):683–699, 2015.

[31] Junghoon Kim, Tao Guo, Kaiyu Feng, Gao Cong, Arijit Khan, and
Farhana M Choudhury. Densely connected user community and location
cluster search in location-based social networks. In Proceedings of the 2020
ACM SIGMOD international conference on management of data, pages
2199–2209, 2020.

[32] Nir Lahav, Baruch Ksherim, Eti Ben-Simon, Adi Maron-Katz, Reuven Co-
hen, and Shlomo Havlin. K-shell decomposition reveals hierarchical cortical
organization of the human brain. New Journal of Physics, 18(8):083013,
2016.

[33] Jure Leskovec and Eric Horvitz. Planetary-scale views on a large instant-
messaging network. In Proceedings of the 17th international conference on
World Wide Web, pages 915–924, 2008.

[34] Qiyan Li, Yuanyuan Zhu, and Jeffrey Xu Yu. Skyline cohesive group queries
in large road-social networks. In 2020 IEEE 36th International Conference
on Data Engineering (ICDE), pages 397–408. IEEE, 2020.

[35] Xiucheng Li, Kaiqi Zhao, Gao Cong, Christian S Jensen, and Wei Wei. Deep
representation learning for trajectory similarity computation. In 2018 IEEE
34th international conference on data engineering (ICDE), pages 617–628.
IEEE, 2018.

27

[36] Jian-Hong Lin, Qiang Guo, Wen-Zhao Dong, Li-Ying Tang, and Jian-Guo
Liu. Identifying the node spreading influence with largest k-core values.
Physics Letters A, 378(45):3279–3284, 2014.

[37] Caihong Liu and Chonghui Guo. Stccd: Semantic trajectory clustering
based on community detection in networks. Expert Systems with Applica-
tions, 162:113689, 2020.

[38] Linyuan Lü, Duanbing Chen, Xiao-Long Ren, Qian-Ming Zhang, Yi-Cheng
Zhang, and Tao Zhou. Vital nodes identification in complex networks.
Physics Reports, 650:1–63, 2016.

[39] Linyuan Lü, Tao Zhou, Qian-Ming Zhang, and H Eugene Stanley. The
h-index of a network node and its relation to degree and coreness. Nature
communications, 7(1):1–7, 2016.

[40] R Duncan Luce and Albert D Perry. A method of matrix analysis of group
structure. Psychometrika, 14(2):95–116, 1949.

[41] Feng Luo, Bo Li, Xiu-Feng Wan, and Richard H Scheuermann. Core and
periphery structures in protein interaction networks. In BMC bioinformat-
ics, volume 10, pages 1–11. BioMed Central, 2009.

[42] Fragkiskos D Malliaros, Christos Giatsidis, Apostolos N Papadopoulos, and
Michalis Vazirgiannis. The core decomposition of networks: Theory, algo-
rithms and applications. The VLDB Journal, 29(1):61–92, 2020.

[43] Polykarpos Meladianos, Antoine Tixier, Ioannis Nikolentzos, and Michalis
Vazirgiannis. Real-time keyword extraction from conversations. In Pro-
ceedings of the 15th Conference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Papers, pages 462–467,
2017.

[44] Mirco Nanni and Dino Pedreschi. Time-focused clustering of trajectories of
moving objects. Journal of Intelligent Information Systems, 27(3):267–289,
2006.

[45] Mark EJ Newman and Michelle Girvan. Finding and evaluating community
structure in networks. Physical review E, 69(2):026113, 2004.

[46] Giannis Nikolentzos, Polykarpos Meladianos, Stratis Limnios, and Michalis
Vazirgiannis. A degeneracy framework for graph similarity. In IJCAI, pages
2595–2601, 2018.

[47] Sen Pei, Lev Muchnik, José S Andrade Jr, Zhiming Zheng, and Hernán A
Makse. Searching for superspreaders of information in real-world social
media. Scientific reports, 4(1):1–12, 2014.

28

[48] Nikos Pelekis, Ioannis Kopanakis, Gerasimos Marketos, Irene Ntoutsi, Gen-
nady Andrienko, and Yannis Theodoridis. Similarity search in trajectory
databases. In 14th International Symposium on Temporal Representation
and Reasoning (TIME’07), pages 129–140. IEEE, 2007.

[49] Mark T Robinson. The temporal development of collision cascades in
the binary-collision approximation. Nuclear Instruments and Methods in
Physics Research Section B: Beam Interactions with Materials and Atoms,
48(1-4):408–413, 1990.

[50] François Rousseau and Michalis Vazirgiannis. Main core retention on
graph-of-words for single-document keyword extraction. In European Con-
ference on Information Retrieval, pages 382–393. Springer, 2015.

[51] Soumya Sarkar, Aditya Bhagwat, and Animesh Mukherjee. Core2vec:
A core-preserving feature learning framework for networks. In 2018
IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining (ASONAM), pages 487–490. IEEE, 2018.

[52] Stephen B Seidman. Network structure and minimum degree. Social net-
works, 5(3):269–287, 1983.

[53] Shuo Shang, Lisi Chen, Zhewei Wei, Christian Søndergaard Jensen, Kai
Zheng, and Panos Kalnis. Trajectory similarity join in spatial networks.
Proceedings of the VLDB Endowment, 10(11), 2017.

[54] Kijung Shin, Tina Eliassi-Rad, and Christos Faloutsos. Corescope: Graph
mining using k-core analysis—patterns, anomalies and algorithms. In 2016
IEEE 16th international conference on data mining (ICDM), pages 469–
478. IEEE, 2016.

[55] Kijung Shin, Tina Eliassi-Rad, and Christos Faloutsos. Patterns and
anomalies in k-cores of real-world graphs with applications. Knowledge
and Information Systems, 54(3):677–710, 2018.

[56] Han Su, Shuncheng Liu, Bolong Zheng, Xiaofang Zhou, and Kai Zheng. A
survey of trajectory distance measures and performance evaluation. The
VLDB Journal, 29(1):3–32, 2020.

[57] Antoine Tixier, Fragkiskos Malliaros, and Michalis Vazirgiannis. A graph
degeneracy-based approach to keyword extraction. In Proceedings of the
2016 conference on empirical methods in natural language processing, pages
1860–1870, 2016.

[58] Johan Ugander, Brian Karrer, Lars Backstrom, and Cameron Marlow. The
anatomy of the facebook social graph. arXiv preprint arXiv:1111.4503,
2011.

[59] Martijn P Van Den Heuvel and Olaf Sporns. Rich-club organization of the
human connectome. Journal of Neuroscience, 31(44):15775–15786, 2011.

29

[60] Trivik Verma, F Russmann, Nuno AM Araújo, Jan Nagler, and Hans J
Herrmann. Emergence of core–peripheries in networks. Nature communi-
cations, 7(1):1–7, 2016.

[61] Michail Vlachos, George Kollios, and Dimitrios Gunopulos. Discovering
similar multidimensional trajectories. In Proceedings 18th international
conference on data engineering, pages 673–684. IEEE, 2002.

[62] Kai Wang, Xin Cao, Xuemin Lin, Wenjie Zhang, and Lu Qin. Efficient
computing of radius-bounded k-cores. In 2018 IEEE 34th international
conference on data engineering (ICDE), pages 233–244. IEEE, 2018.

[63] Stanley Wasserman, Katherine Faust, et al. Social network analysis: Meth-
ods and applications. 1994.

[64] Cynthia I Wood and Illya V Hicks. The minimal k-core problem for mod-
eling k-assemblies. The Journal of Mathematical Neuroscience (JMN),
5(1):1–19, 2015.

[65] Stefan Wuchty and Eivind Almaas. Peeling the yeast protein network.
Proteomics, 5(2):444–449, 2005.

[66] Kai Yao, Dimitris Papadias, and Spiridon Bakiras. Density-based com-
munity detection in geo-social networks. In Proceedings of the 16th in-
ternational symposium on spatial and temporal databases, pages 110–119,
2019.

[67] Yihong Yuan and Martin Raubal. Measuring similarity of mobile phone
user trajectories–a spatio-temporal edit distance method. International
Journal of Geographical Information Science, 28(3):496–520, 2014.

[68] Fan Zhang, Ying Zhang, Lu Qin, Wenjie Zhang, and Xuemin Lin. When
engagement meets similarity: efficient (k, r)-core computation on social
networks. arXiv preprint arXiv:1611.03254, 2016.

[69] Qijun Zhu, Haibo Hu, Cheng Xu, Jianliang Xu, and Wang-Chien Lee. Geo-
social group queries with minimum acquaintance constraints. The VLDB
Journal, 26(5):709–727, 2017.

[70] Ren Zhuo-Ming, Liu Jian-Guo, Shao Feng, Hu Zhao-Long, and Guo Qiang.
Analysis of the spreading influence of the nodes with minimum k-shell value
in complex networks. Acta Physica Sinica, 62(10), 2013.

30

